1. A Predicted Dearth of Majority Hypervolatile Ices in Oort Cloud Comets
- Author
-
Lisse, C. M., Gladstone, G. R., Young, L. A., Cruikshank, D. P., Sandford, S. A., Schmitt, B., Stern, S. A., Weaver, H. A., Umurhan, O., Pendleton, Y. J., Keane, J. T., Parker, J. M., Binzel, R. P., Earle, A. M., Horanyi, M., El-Maarry, M., Cheng, A. F., Moore, J. M., McKinnon, W. B., Grundy, W. M., Kavelaars, J. J., Linscott, I. R., Lyra, W., Lewis, B. L., Britt, D. T., Spencer, J. R., Olkin, C. B., McNutt, R. L., Elliott, H. A., Dello-Russo, N., Steckloff, J. K., Neveu, M., and Mousis, O.
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Solar and Stellar Astrophysics - Abstract
We present new, ice species-specific New Horizons/Alice upper gas coma production limits from the 01 Jan 2019 MU69/Arrokoth flyby of Gladstone et al. (2021) and use them to make predictions about the rarity of majority hypervolatile (CO, N$_2$, CH$_4$) ices in KBOs and Oort Cloud comets. These predictions have a number of important implications for the study of the Oort Cloud, including: determination of hypervolatile rich comets as the first objects emplaced into the Oort Cloud; measurement of CO/N$_2$/CH$_4$ abundance ratios in the proto-planetary disk from hypervolatile rich comets; and population statistical constraints on early (< 20 Myr) planetary aggregation driven versus later (> 50 Myr) planetary migration driven emplacement of objects into the Oort Cloud. They imply that the phenomenon of ultra-distant active comets like C/2017K2 (Jewitt et al. 2017, Hui et al. 2018) should be rare, and thus not a general characteristic of all comets. They also suggest that interstellar object 2I/Borisov did not originate in a planetary system that was inordinately CO rich (Bodewits et al. 2020), but rather could have been ejected onto an interstellar trajectory very early in its natal system's history., Comment: 16 Pages, 2 Figures, 1 Table; accepted for Publication in PSJ 14-Mar-2022
- Published
- 2022