Bonifaci, Nelly, Iséni, Sylvain, Le Meur, Julien, Lesaint, Olivier, Poulain, Christophe, G2Elab-Electronique de puissance (G2Elab-EP), Laboratoire de Génie Electrique de Grenoble (G2ELab ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Groupe de recherches sur l'énergétique des milieux ionisés (GREMI), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de l'Ingénierie et des Systèmes (INSIS - CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
International audience; The breakdown voltage (Vb) of gases can be reasonably estimated using Paschen's law, which is based on assumptions such as a perfectly uniform electric field, and infinite electrode size. This analytical approach has demonstrated remarkable capability in redicting Vb in numerous cases, by scaling it by the product of pressure and nter-electrode distance (p·d). This description is quite efficient and convenient over wide ranges of pressure and gap distance. However, the robustness of Paschen's law in predicting consistent values of Vb is severely compromised at gap distances shorter than typically 1 micrometer at atmospheric pressure. Several studies have provided experimental, theoretical, and simulation evidences highlighting these limitations. This raised significant concerns, both theoretical and practical, about the insulation properties of gases at short distances. This study focuses on experimentally investigating Vb of air in short electrode gaps, ranging from 100 nm to 6 μm. The electrode system consists of a silicon wafer coated with gold, connected to ground. The anode connected to high voltage is a sharp CuBe needle coated with gold, with 20 μm tip radius of curvature. The gap distance is controlled by a piezoelectric actuator. Ambient air is used at atmospheric pressure, allowing for comparisons with data from existing literature. Complementary experiments are also performed in a closed chamber allowing to vary the pressure from 10-4 mbar to 3.0 bar, and control the gas purity and water content.