33 results on '"Kader, R."'
Search Results
2. Randomized controlled trial of a cloud-based artificial intelligence (AI) computer-aided diagnosis (CADx) system in non-expert endoscopists (CADDIE)
- Author
-
Kader, R., additional, Bassett, P., additional, Kabir, Y., additional, Cheung, S., additional, Macabodbod, L., additional, Jayanthi, A., additional, Caddie, I. T., additional, Chand, M., additional, and Lovat, L., additional
- Published
- 2024
- Full Text
- View/download PDF
3. The Challenge of Salinity : Emphasizing the role of cross-sectoral collaboration and partnerships
- Author
-
van Staveren, M.F., Bodlaender, B., Boroto, Jean Ruhiza, Cober, Timo, Demmers, I.M.A.A., Elmendorp, Rick, Fonseca, Marc, Ganguly, A., van Ginneken, Meike, Haverkamp, P., Kader, R., Konyushkova, Maria, Kruiderink, S.I., Lyra, D.A., Murir, S., Nangia, Vinay, Negacz, K., Overkamp, K., Owino, K., Snethlage, J.S., Terwisscha van Scheltinga, C.T.H.M., van Tongeren, P., de Vos, Arjen, van Staveren, M.F., Bodlaender, B., Boroto, Jean Ruhiza, Cober, Timo, Demmers, I.M.A.A., Elmendorp, Rick, Fonseca, Marc, Ganguly, A., van Ginneken, Meike, Haverkamp, P., Kader, R., Konyushkova, Maria, Kruiderink, S.I., Lyra, D.A., Murir, S., Nangia, Vinay, Negacz, K., Overkamp, K., Owino, K., Snethlage, J.S., Terwisscha van Scheltinga, C.T.H.M., van Tongeren, P., and de Vos, Arjen
- Abstract
The Magazine is one of the outputs of the Saline Water and Food Systems (SWFS) partnership and several of its international partners. In 2022 the Netherlands Food Partnership (NFP) and the Netherlands Water Partnership (NWP) launched the SWFS partnership as a cross-sectoral collaboration to strengthen cooperation between the Dutch water and agrifood sectors to address the challenge of salinity in low and middle-income countries (LMICs). It has been supported by variousorganizations in the Netherlands, including the Dutch Ministry of Agriculture, Nature, and Food Quality.Through the networks of NFP and NWP, we facilitate the collaboration of stakeholders from diverse sectors, including governmental ministries, esteemed knowledge and research institutes, Non-Governmental Organizations,and corporate entities within the water and food sectors.
- Published
- 2024
4. Stoma-free survival after anastomotic leak following rectal cancer resection: worldwide cohort of 2470 patients
- Author
-
Greijdanus, N, Wienholts, K, Ubels, S, Talboom, K, Hannink, G, Wolthuis, A, de Lacy, F, Lefevre, J, Solomon, M, Frasson, M, Rotholtz, N, Denost, Q, Perez, R, Konishi, T, Panis, Y, Rutegard, M, Hompes, R, Rosman, C, van Workum, F, Tanis, P, de Wilt, J, Bremers, A, Ferenschild, F, de Vriendt, S, D'Hoore, A, Bislenghi, G, Farguell, J, Lacy, A, Atienza, P, van Kessel, C, Parc, Y, Voron, T, Collard, M, Muriel, J, Cholewa, H, Mattioni, L, Frontali, A, Polle, S, Polat, F, Obihara, N, Vailati, B, Kusters, M, Tuynmann, J, Hazen, S, Gruter, A, Amano, T, Fujiwara, H, Salomon, M, Ruiz, H, Gonzalez, R, Estefania, D, Avellaneda, N, Carrie, A, Santillan, M, Pachajoa, D, Parodi, M, Gielis, M, Binder, A, Gurtler, T, Riedl, P, Badiani, S, Berney, C, Morgan, M, Hollington, P, da Silva, N, Nair, G, Ho, Y, Lamparelli, M, Kapadia, R, Kroon, H, Dudi-Venkata, N, Liu, J, Sammour, T, Flamey, N, Pattyn, P, Chaoui, A, Vansteenbrugge, L, van den Broek, N, Vanclooster, P, de Gheldere, C, Pletinckx, P, Defoort, B, Dewulf, M, Slavchev, M, Belev, N, Atanasov, B, Krastev, P, Sokolov, M, Maslyankov, S, Gribnev, P, Pavlov, V, Ivanov, T, Karamanliev, M, Filipov, E, Tonchev, P, Aigner, F, Mitteregger, M, Allmer, C, Seitinger, G, Colucci, N, Buchs, N, Ris, F, Toso, C, Gialamas, E, Vuagniaux, A, Chautems, R, Sauvain, M, Daester, S, von Flue, M, Guenin, M, Taha-Mehlitz, S, Hess, G, Martinek, L, Skrovina, M, Machackova, M, Bencurik, V, Uluk, D, Pratschke, J, Dittrich, L, Guel-Klein, S, Perez, D, Grass, J, Melling, N, Mueller, S, Iversen, L, Eriksen, J, Baatrup, G, Al-Najami, I, Bjorsum-Meyer, T, Teras, J, Teras, R, Monib, F, Ahmed, N, Alkady, E, Ali, A, Khedr, G, Abdelaal, A, Ashoush, F, Ewedah, M, Elshennawy, E, Hussein, M, Fernandez-Martinez, D, Garcia-Florez, L, Fernandez-Hevia, M, Suarez-Sanchez, A, Aretxabala, I, Docampo, I, Zabala, J, Tejedor, P, Morales Bernaldo de Quiros, J, Quiroga, I, Navarro-Sanchez, A, Darias, I, Fernandez, C, de La Cruz Cuadrado, C, Sanchez-Guillen, L, Lopez-Rodriguez-Arias, F, Soler-Silva, A, Arroyo, A, Bernal-Sprekelsen, J, Gomez-Abril, S, Gonzalvez, P, Torres, M, Sanchez, T, Antona, F, Lara, J, Montero, J, Mendoza-Moreno, F, Diez-Alonso, M, Matias-Garcia, B, Quiroga-Valcarcel, A, Colas-Ruiz, E, Tasende-Presedo, M, Fernandez-Hurtado, I, Cifuentes-Rodenas, J, Suarez, M, Losada, M, Hernandez, M, Alonso, A, Dieguez, B, Serralta, D, Quintana, R, Lopez, J, Pinto, F, Nieto-Moreno, E, Bonito, A, Santacruz, C, Marcos, E, Septiem, J, Calero-Lillo, A, Alanez-Saavedra, J, Munoz-Collado, S, Lopez-Lara, M, Martinez, M, Herrero, E, Borda, F, Villar, O, Escartin, J, Blas, J, Ferrer, R, Egea, J, Rodriguez-Infante, A, Minguez-Ruiz, G, Carreno-Villarreal, G, Pire-Abaitua, G, Dziakova, J, Rodriguez, C, Aranda, M, Huguet, J, Borda-Arrizabalaga, N, Enriquez-Navascues, J, Echaniz, G, Ansorena, Y, Estaire-Gomez, M, Martinez-Pinedo, C, Barbero-Valenzuela, A, Ruiz-Garcia, P, Kraft, M, Gomez-Jurado, M, Pellino, G, Espin-Basany, E, Cotte, E, Panel, N, Goutard, C, de Angelis, N, Lauka, L, Shaikh, S, Osborne, L, Ramsay, G, Nichita, V, Bhandari, S, Sarmah, P, Bethune, R, Pringle, H, Massey, L, Fowler, G, Hamid, H, de Simone, B, Kynaston, J, Bradley, N, Stienstra, R, Gurjar, S, Mukherjee, T, Chandio, A, Ahmed, S, Singh, B, Runau, F, Chaudhri, S, Siaw, O, Sarveswaran, J, Miu, V, Ashmore, D, Darwich, H, Singh-Ranger, D, Singh, N, Shaban, M, Gareb, F, Petropolou, T, Polydorou, A, Dattani, M, Afzal, A, Bavikatte, A, Sebastian, B, Ward, N, Mishra, A, Manatakis, D, Agalianos, C, Tasis, N, Antonopoulou, M, Karavokyros, I, Charalabopoulos, A, Schizas, D, Baili, E, Syllaios, A, Karydakis, L, Vailas, M, Balalis, D, Korkolis, D, Plastiras, A, Rompou, A, Xenaki, S, Xynos, E, Chrysos, E, Venianaki, M, Christodoulidis, G, Perivoliotis, K, Tzovaras, G, Baloyiannis, I, Ho, M, Ng, S, Mak, T, Futaba, K, Santak, G, Simlesa, D, Cosic, J, Zukanovic, G, Kelly, M, Larkin, J, Mccormick, P, Mehigan, B, Connelly, T, Neary, P, Ryan, J, Mccullough, P, Al-Juaifari, M, Hammoodi, H, Abbood, A, Calabro, M, Muratore, A, La Terra, A, Farnesi, F, Feo, C, Fabbri, N, Pesce, A, Fazzin, M, Roscio, F, Clerici, F, Lucchi, A, Vittori, L, Agostinelli, L, Ripoli, M, Sambucci, D, Porta, A, Sinibaldi, G, Crescentini, G, Larcinese, A, Picone, E, Persiani, R, Biondi, A, Pezzuto, R, Lorenzon, L, Rizzo, G, Coco, C, D'Agostino, L, Spinelli, A, Sacchi, M, Carvello, M, Foppa, C, Maroli, A, Palini, G, Garulli, G, Zanini, N, Delrio, P, Rega, D, Carbone, F, Aversano, A, Pirozzolo, G, Recordare, A, D'Alimonte, L, Vignotto, C, Corbellini, C, Sampietro, G, Lorusso, L, Manzo, C, Ghignone, F, Ugolini, G, Montroni, I, Pasini, F, Ballabio, M, Bisagni, P, Armao, F, Longhi, M, Ghazouani, O, Galleano, R, Tamini, N, Oldani, M, Nespoli, L, Picciariello, A, Altomare, D, Tomasicchio, G, Lantone, G, Catena, F, Giuffrida, M, Annicchiarico, A, Perrone, G, Grossi, U, Santoro, G, Zanus, G, Iacomino, A, Novello, S, Passuello, N, Zucchella, M, Puca, L, Degiuli, M, Reddavid, R, Scabini, S, Aprile, A, Soriero, D, Fioravanti, E, Rottoli, M, Romano, A, Tanzanu, M, Belvedere, A, Mariani, N, Ceretti, A, Opocher, E, Gallo, G, Sammarco, G, de Paola, G, Pucciarelli, S, Marchegiani, F, Spolverato, G, Buzzi, G, Di Saverio, S, Meroni, P, Parise, C, Bottazzoli, E, Lapolla, P, Brachini, G, Cirillo, B, Mingoli, A, Sica, G, Siragusa, L, Bellato, V, Cerbo, D, de Pasqual, C, de Manzoni, G, di Cosmo, M, Alrayes, B, Qandeel, M, Hani, M, Rabadi, A, el Muhtaseb, M, Abdeen, B, Karmi, F, Zilinskas, J, Latkauskas, T, Tamelis, A, Pikuniene, I, Slenfuktas, V, Poskus, T, Kryzauskas, M, Jakubauskas, M, Mikalauskas, S, Jakubauskiene, L, Hassan, S, Altrabulsi, A, Abdulwahed, E, Ghmagh, R, Deeknah, A, Alshareea, E, Elhadi, M, Abujamra, S, Msherghi, A, Tababa, O, Majbar, M, Souadka, A, Benkabbou, A, Mohsine, R, Echiguer, S, Moctezuma-Velazquez, P, Salgado-Nesme, N, Vergara-Fernandez, O, Sainz-Hernandez, J, Alvarez-Bautista, F, Zakaria, A, Zakaria, Z, Wong, M, Ismail, R, Ibrahim, A, Abdullah, N, Julaihi, R, Bhat, S, O'Grady, G, Bissett, I, Lamme, B, Musters, G, Dinaux, A, Grotenhuis, B, Steller, E, Aalbers, A, Leeuwenburgh, M, Rutten, H, Burger, J, Bloemen, J, Ketelaers, S, Waqar, U, Chawla, T, Rauf, H, Rani, P, Talsma, A, Scheurink, L, van Praagh, J, Segelman, J, Nygren, J, Anderin, K, Tiefenthal, M, de Andres, B, Beltran de Heredia, J, Vazquez, A, Gomez, T, Golshani, P, Kader, R, Mohamed, A, Westerterp, M, Marinelli, A, Niemer, Q, Doornebosch, P, Shapiro, J, Vermaas, M, de Graaf, E, van Westreenen, H, Zwakman, M, van Dalsen, A, Vles, W, Nonner, J, Toorenvliet, B, Janssen, P, Verdaasdonk, E, Amelung, F, Peeters, K, Bahadoer, R, Holman, F, Heemskerk, J, Vosbeek, N, Leijtens, J, Taverne, S, Heijnen, B, El-Massoudi, Y, de Groot-Van Veen, I, Hoff, C, Jou-Valencia, D, Consten, E, Burghgraef, T, Geitenbeek, R, Hulshof, L, Slooter, G, Reudink, M, Bouvy, N, Wildeboer, A, Verstappen, S, Pennings, A, van den Hengel, B, Wijma, A, de Haan, J, de Nes, L, Heesink, V, Karsten, T, Heidsma, C, Koemans, W, Dekker, J, van der Zijden, C, Roos, D, Demirkiran, A, van der Burg, S, Oosterling, S, Hoogteijling, T, Wiering, B, Smeeing, D, Havenga, K, Lutfi, H, Tsimogiannis, K, Skoldberg, F, Folkesson, J, den Boer, F, van Schaik, T, van Gerven, P, Sietses, C, Hol, J, Boerma, E, Creemers, D, Schultz, J, Frivold, T, Riis, R, Gregussen, H, Busund, S, Sjo, O, Gaard, M, Krohn, N, Ersryd, A, Leung, E, Sultan, H, Hajjaj, B, Alhisi, A, Khader, A, Mendes, A, Semiao, M, Faria, L, Azevedo, C, da Costa Devesa, H, Martins, S, Jarimba, A, Marques, S, Ferreira, R, Oliveira, A, Ferreira, C, Pereira, R, Surlin, V, Graure, G, Ramboiu, S, Negoi, I, Ciubotaru, C, Stoica, B, Tanase, I, Negoita, V, Florea, S, Macau, F, Vasile, M, Stefanescu, V, Dimofte, G, Lunca, S, Roata, C, Musina, A, Garmanova, T, Agapov, M, Markaryan, D, Eduard, G, Yanishev, A, Abelevich, A, Bazaev, A, Rodimov, S, Filimonov, V, Melnikov, A, Suchkov, I, Drozdov, E, Kostromitskiy, D, Sjostrom, O, Matthiessen, P, Baban, B, Gadan, S, Jadid, K, Staffan, M, Park, J, Rydbeck, D, Lydrup, M, Buchwald, P, Jutesten, H, Darlin, L, Lindqvist, E, Nilsson, K, Larsson, P, Jangmalm, S, Kosir, J, Tomazic, A, Grosek, J, Bozic, T, Zazo, A, Zazo, R, Fares, H, Ayoub, K, Niazi, A, Mansour, A, Abbas, A, Tantoura, M, Hamdan, A, Hassan, N, Hasan, B, Saad, A, Sebai, A, Haddad, A, Maghrebi, H, Kacem, M, Yalkin, O, Samsa, M, Atak, I, Balci, B, Haberal, E, Dogan, L, Gecim, I, Akyol, C, Koc, M, Sivrikoz, E, Piyadeoglu, D, Avanagh, D, Sokmen, S, Bisgin, T, Gunenc, E, Guzel, M, Leventoglu, S, Yuksel, O, Kozan, R, Gobut, H, Cengiz, F, Erdinc, K, Acar, N, Kamer, E, Ozgur, I, Aydin, O, Keskin, M, Bulut, M, Kulle, C, Kara, Y, Sibic, O, Ozata, I, Bugra, D, Balik, E, Cakir, M, Alhardan, A, Colak, E, Aybar, A, Sari, A, Atici, S, Kaya, T, Dursun, A, Calik, B, Ozkan, O, Ulgur, H, Duzgun, O, Monson, J, George, S, Woods, K, Al-Eryani, F, Albakry, R, Coetzee, E, Boutall, A, Herman, A, Warden, C, Mugla, N, Forgan, T, Mia, I, Lambrechts, A, Greijdanus N. G., Wienholts K., Ubels S., Talboom K., Hannink G., Wolthuis A., de Lacy F. B., Lefevre J. H., Solomon M., Frasson M., Rotholtz N., Denost Q., Perez R. O., Konishi T., Panis Y., Rutegard M., Hompes R., Rosman C., van Workum F., Tanis P. J., de Wilt J. H. W., Bremers A. J. A., Ferenschild F. T., de Vriendt S., D'Hoore A., Bislenghi G., Farguell J., Lacy A. M., Atienza P. G., van Kessel C. S., Parc Y., Voron T., Collard M. K., Muriel J. S., Cholewa H., Mattioni L. A., Frontali A., Polle S. W., Polat F., Obihara N. J., Vailati B. B., Kusters M., Tuynmann J. B., Hazen S. J. A., Gruter A. A. J., Amano T., Fujiwara H., Salomon M., Ruiz H., Gonzalez R., Estefania D., Avellaneda N., Carrie A., Santillan M., Pachajoa D. A. P., Parodi M., Gielis M., Binder A. -D., Gurtler T., Riedl P., Badiani S., Berney C., Morgan M., Hollington P., da Silva N., Nair G., Ho Y. M., Lamparelli M., Kapadia R., Kroon H. M., Dudi-Venkata N. N., Liu J., Sammour T., Flamey N., Pattyn P., Chaoui A., Vansteenbrugge L., van den Broek N. E. J., Vanclooster P., de Gheldere C., Pletinckx P., Defoort B., Dewulf M., Slavchev M., Belev N., Atanasov B., Krastev P., Sokolov M., Maslyankov S., Gribnev P., Pavlov V., Ivanov T., Karamanliev M., Filipov E., Tonchev P., Aigner F., Mitteregger M., Allmer C., Seitinger G., Colucci N., Buchs N., Ris F., Toso C., Gialamas E., Vuagniaux A., Chautems R., Sauvain M. -O., Daester S., von Flue M., Guenin M. -O., Taha-Mehlitz S., Hess G. F., Martinek L., Skrovina M., Machackova M., Bencurik V., Uluk D., Pratschke J., Dittrich L. S., Guel-Klein S., Perez D., Grass J. -K., Melling N., Mueller S., Iversen L. H., Eriksen J. D., Baatrup G., Al-Najami I., Bjorsum-Meyer T., Teras J., Teras R. M., Monib F. A., Ahmed N. E. A. E., Alkady E., Ali A. K., Khedr G. A. E., Abdelaal A. S., Ashoush F. M. B., Ewedah M., Elshennawy E. M., Hussein M., Fernandez-Martinez D., Garcia-Florez L. J., Fernandez-Hevia M., Suarez-Sanchez A., Aretxabala I. D. H., Docampo I. L., Zabala J. G., Tejedor P., Morales Bernaldo de Quiros J. T., Quiroga I. B., Navarro-Sanchez A., Darias I. S., Fernandez C. L., de La Cruz Cuadrado C., Sanchez-Guillen L., Lopez-Rodriguez-Arias F., Soler-Silva A., Arroyo A., Bernal-Sprekelsen J. C., Gomez-Abril S. A., Gonzalvez P., Torres M. T., Sanchez T. R., Antona F. B., Lara J. E. S., Montero J. A. A., Mendoza-Moreno F., Diez-Alonso M., Matias-Garcia B., Quiroga-Valcarcel A., Colas-Ruiz E., Tasende-Presedo M. M., Fernandez-Hurtado I., Cifuentes-Rodenas J. A., Suarez M. C., Losada M., Hernandez M., Alonso A., Dieguez B., Serralta D., Quintana R. E. M., Lopez J. M. G., Pinto F. L., Nieto-Moreno E., Bonito A. C., Santacruz C. C., Marcos E. B., Septiem J. G., Calero-Lillo A., Alanez-Saavedra J., Munoz-Collado S., Lopez-Lara M., Martinez M. L., Herrero E. F., Borda F. J. G., Villar O. G., Escartin J., Blas J. L., Ferrer R., Egea J. G., Rodriguez-Infante A., Minguez-Ruiz G., Carreno-Villarreal G., Pire-Abaitua G., Dziakova J., Rodriguez C. S. -C., Aranda M. J. P., Huguet J. M. M., Borda-Arrizabalaga N., Enriquez-Navascues J. M., Echaniz G. E., Ansorena Y. S., Estaire-Gomez M., Martinez-Pinedo C., Barbero-Valenzuela A., Ruiz-Garcia P., Kraft M., Gomez-Jurado M. J., Pellino G., Espin-Basany E., Cotte E., Panel N., Goutard C. -A., de Angelis N., Lauka L., Shaikh S., Osborne L., Ramsay G., Nichita V. -I., Bhandari S., Sarmah P., Bethune R. M., Pringle H. C. M., Massey L., Fowler G. E., Hamid H. K. S., de Simone B. D., Kynaston J., Bradley N., Stienstra R. M., Gurjar S., Mukherjee T., Chandio A., Ahmed S., Singh B., Runau F., Chaudhri S., Siaw O., Sarveswaran J., Miu V., Ashmore D., Darwich H., Singh-Ranger D., Singh N., Shaban M., Gareb F., Petropolou T., Polydorou A., Dattani M., Afzal A., Bavikatte A., Sebastian B., Ward N., Mishra A., Manatakis D., Agalianos C., Tasis N., Antonopoulou M. -I., Karavokyros I., Charalabopoulos A., Schizas D., Baili E., Syllaios A., Karydakis L., Vailas M., Balalis D., Korkolis D., Plastiras A., Rompou A., Xenaki S., Xynos E., Chrysos E., Venianaki M., Christodoulidis G., Perivoliotis K., Tzovaras G., Baloyiannis I., Ho M. -F., Ng S. S., Mak T. W. -C., Futaba K., Santak G., Simlesa D., Cosic J., Zukanovic G., Kelly M. E., Larkin J. O., McCormick P. H., Mehigan B. J., Connelly T. M., Neary P., Ryan J., McCullough P., Al-Juaifari M. A., Hammoodi H., Abbood A. H., Calabro M., Muratore A., La Terra A., Farnesi F., Feo C. V., Fabbri N., Pesce A., Fazzin M., Roscio F., Clerici F., Lucchi A., Vittori L., Agostinelli L., Ripoli M. C., Sambucci D., Porta A., Sinibaldi G., Crescentini G., Larcinese A., Picone E., Persiani R., Biondi A., Pezzuto R., Lorenzon L., Rizzo G., Coco C., D'Agostino L., Spinelli A., Sacchi M. M., Carvello M., Foppa C., Maroli A., Palini G. M., Garulli G., Zanini N., Delrio P., Rega D., Carbone F., Aversano A., Pirozzolo G., Recordare A., D'Alimonte L., Vignotto C., Corbellini C., Sampietro G. M., Lorusso L., Manzo C. A., Ghignone F., Ugolini G., Montroni I., Pasini F., Ballabio M., Bisagni P., Armao F. T., Longhi M., Ghazouani O., Galleano R., Tamini N., Oldani M., Nespoli L., Picciariello A., Altomare D. F., Tomasicchio G., Lantone G., Catena F., Giuffrida M., Annicchiarico A., Perrone G., Grossi U., Santoro G. A., Zanus G., Iacomino A., Novello S., Passuello N., Zucchella M., Puca L., deGiuli M., Reddavid R., Scabini S., Aprile A., Soriero D., Fioravanti E., Rottoli M., Romano A., Tanzanu M., Belvedere A., Mariani N. M., Ceretti A. P., Opocher E., Gallo G., Sammarco G., de Paola G., Pucciarelli S., Marchegiani F., Spolverato G., Buzzi G., Di Saverio S., Meroni P., Parise C., Bottazzoli E. I., Lapolla P., Brachini G., Cirillo B., Mingoli A., Sica G., Siragusa L., Bellato V., Cerbo D., de Pasqual C. A., de Manzoni G., di Cosmo M. A., Alrayes B. M. H., Qandeel M. W. M., Hani M. B., Rabadi A., el Muhtaseb M. S., Abdeen B., Karmi F., Zilinskas J., Latkauskas T., Tamelis A., Pikuniene I., Slenfuktas V., Poskus T., Kryzauskas M., Jakubauskas M., Mikalauskas S., Jakubauskiene L., Hassan S. Y., Altrabulsi A., Abdulwahed E., Ghmagh R., Deeknah A., Alshareea E., Elhadi M., Abujamra S., Msherghi A. A., Tababa O. W. E., Majbar M. A., Souadka A., Benkabbou A., Mohsine R., Echiguer S., Moctezuma-Velazquez P., Salgado-Nesme N., Vergara-Fernandez O., Sainz-Hernandez J. C., Alvarez-Bautista F. E., Zakaria A. D., Zakaria Z., Wong M. P. K., Ismail R., Ibrahim A. F., Abdullah N. A. N., Julaihi R., Bhat S., O'Grady G., Bissett I., Lamme B., Musters G. D., Dinaux A. M., Grotenhuis B. A., Steller E. J., Aalbers A. G. J., Leeuwenburgh M. M., Rutten H. J. T., Burger J. W. A., Bloemen J. G., Ketelaers S. H. J., Waqar U., Chawla T., Rauf H., Rani P., Talsma A. K., Scheurink L., van Praagh J. B., Segelman J., Nygren J., Anderin K., Tiefenthal M., de Andres B., Beltran de Heredia J. P., Vazquez A., Gomez T., Golshani P., Kader R., Mohamed A., Westerterp M., Marinelli A., Niemer Q., Doornebosch P. G., Shapiro J., Vermaas M., de Graaf E. J. R., van Westreenen H. L., Zwakman M., van Dalsen A. D., Vles W. J., Nonner J., Toorenvliet B. R., Janssen P. T. J., Verdaasdonk E. G. G., Amelung F. J., Peeters K. C. M. J., Bahadoer R. R., Holman F. A., Heemskerk J., Vosbeek N., Leijtens J. W. A., Taverne S. B. M., Heijnen B. H. M., El-Massoudi Y., de Groot-Van Veen I., Hoff C., Jou-Valencia D., Consten E. C. J., Burghgraef T. A., Geitenbeek R., Hulshof L. G. W. L., Slooter G. D., Reudink M., Bouvy N. D., Wildeboer A. C. L., Verstappen S., Pennings A. J., van den Hengel B., Wijma A. G., de Haan J., de Nes L. C. F., Heesink V., Karsten T., Heidsma C. M., Koemans W. J., Dekker J. -W. T., van der Zijden C. J., Roos D., Demirkiran A., van der Burg S., Oosterling S. J., Hoogteijling T. J., Wiering B., Smeeing D. P. J., Havenga K., Lutfi H., Tsimogiannis K., Skoldberg F., Folkesson J., den Boer F., van Schaik T. G., van Gerven P., Sietses C., Hol J. C., Boerma E. -J. G., Creemers D. M. J., Schultz J. K., Frivold T., Riis R., Gregussen H., Busund S., Sjo O. H., Gaard M., Krohn N., Ersryd A. L., Leung E., Sultan H., Hajjaj B. N., Alhisi A. J., Khader A. A. E., Mendes A. F. D., Semiao M., Faria L. Q., Azevedo C., da Costa Devesa H. M., Martins S. F., Jarimba A. M. R., Marques S. M. R., Ferreira R. M., Oliveira A., Ferreira C., Pereira R., Surlin V. M., Graure G. M., Ramboiu S. P. S. D., Negoi I., Ciubotaru C., Stoica B., Tanase I., Negoita V. M., Florea S., Macau F., Vasile M., Stefanescu V., Dimofte G. -M., Lunca S., Roata C. -E., Musina A. -M., Garmanova T., Agapov M. N., Markaryan D. G., Eduard G., Yanishev A., Abelevich A., Bazaev A., Rodimov S. V., Filimonov V. B., Melnikov A. A., Suchkov I. A., Drozdov E. S., Kostromitskiy D. N., Sjostrom O., Matthiessen P., Baban B., Gadan S., Jadid K. D., Staffan M., Park J. M., Rydbeck D., Lydrup M. -L., Buchwald P., Jutesten H., Darlin L., Lindqvist E., Nilsson K., Larsson P. -A., Jangmalm S., Kosir J. A., Tomazic A., Grosek J., Bozic T. K., Zazo A., Zazo R., Fares H., Ayoub K., Niazi A., Mansour A., Abbas A., Tantoura M., Hamdan A., Hassan N., Hasan B., Saad A., Sebai A., Haddad A., Maghrebi H., Kacem M., Yalkin O., Samsa M. V., Atak I., Balci B., Haberal E., Dogan L., Gecim I. E., Akyol C., Koc M. A., Sivrikoz E., Piyadeoglu D., Avanagh D. O., Sokmen S., Bisgin T., Gunenc E., Guzel M., Leventoglu S., Yuksel O., Kozan R., Gobut H., Cengiz F., Erdinc K., Acar N. C., Kamer E., Ozgur I., Aydin O., Keskin M., Bulut M. T., Kulle C. B., Kara Y., Sibic O., Ozata I. H., Bugra D., Balik E., Cakir M., Alhardan A., Colak E., Aybar A. B. C., Sari A. C., Atici S. D., Kaya T., Dursun A., Calik B., Ozkan O. F., Ulgur H. S., Duzgun O., Monson J., George S., Woods K., Al-Eryani F., Albakry R., Coetzee E., Boutall A., Herman A., Warden C., Mugla N., Forgan T., Mia I., Lambrechts A., Greijdanus, N, Wienholts, K, Ubels, S, Talboom, K, Hannink, G, Wolthuis, A, de Lacy, F, Lefevre, J, Solomon, M, Frasson, M, Rotholtz, N, Denost, Q, Perez, R, Konishi, T, Panis, Y, Rutegard, M, Hompes, R, Rosman, C, van Workum, F, Tanis, P, de Wilt, J, Bremers, A, Ferenschild, F, de Vriendt, S, D'Hoore, A, Bislenghi, G, Farguell, J, Lacy, A, Atienza, P, van Kessel, C, Parc, Y, Voron, T, Collard, M, Muriel, J, Cholewa, H, Mattioni, L, Frontali, A, Polle, S, Polat, F, Obihara, N, Vailati, B, Kusters, M, Tuynmann, J, Hazen, S, Gruter, A, Amano, T, Fujiwara, H, Salomon, M, Ruiz, H, Gonzalez, R, Estefania, D, Avellaneda, N, Carrie, A, Santillan, M, Pachajoa, D, Parodi, M, Gielis, M, Binder, A, Gurtler, T, Riedl, P, Badiani, S, Berney, C, Morgan, M, Hollington, P, da Silva, N, Nair, G, Ho, Y, Lamparelli, M, Kapadia, R, Kroon, H, Dudi-Venkata, N, Liu, J, Sammour, T, Flamey, N, Pattyn, P, Chaoui, A, Vansteenbrugge, L, van den Broek, N, Vanclooster, P, de Gheldere, C, Pletinckx, P, Defoort, B, Dewulf, M, Slavchev, M, Belev, N, Atanasov, B, Krastev, P, Sokolov, M, Maslyankov, S, Gribnev, P, Pavlov, V, Ivanov, T, Karamanliev, M, Filipov, E, Tonchev, P, Aigner, F, Mitteregger, M, Allmer, C, Seitinger, G, Colucci, N, Buchs, N, Ris, F, Toso, C, Gialamas, E, Vuagniaux, A, Chautems, R, Sauvain, M, Daester, S, von Flue, M, Guenin, M, Taha-Mehlitz, S, Hess, G, Martinek, L, Skrovina, M, Machackova, M, Bencurik, V, Uluk, D, Pratschke, J, Dittrich, L, Guel-Klein, S, Perez, D, Grass, J, Melling, N, Mueller, S, Iversen, L, Eriksen, J, Baatrup, G, Al-Najami, I, Bjorsum-Meyer, T, Teras, J, Teras, R, Monib, F, Ahmed, N, Alkady, E, Ali, A, Khedr, G, Abdelaal, A, Ashoush, F, Ewedah, M, Elshennawy, E, Hussein, M, Fernandez-Martinez, D, Garcia-Florez, L, Fernandez-Hevia, M, Suarez-Sanchez, A, Aretxabala, I, Docampo, I, Zabala, J, Tejedor, P, Morales Bernaldo de Quiros, J, Quiroga, I, Navarro-Sanchez, A, Darias, I, Fernandez, C, de La Cruz Cuadrado, C, Sanchez-Guillen, L, Lopez-Rodriguez-Arias, F, Soler-Silva, A, Arroyo, A, Bernal-Sprekelsen, J, Gomez-Abril, S, Gonzalvez, P, Torres, M, Sanchez, T, Antona, F, Lara, J, Montero, J, Mendoza-Moreno, F, Diez-Alonso, M, Matias-Garcia, B, Quiroga-Valcarcel, A, Colas-Ruiz, E, Tasende-Presedo, M, Fernandez-Hurtado, I, Cifuentes-Rodenas, J, Suarez, M, Losada, M, Hernandez, M, Alonso, A, Dieguez, B, Serralta, D, Quintana, R, Lopez, J, Pinto, F, Nieto-Moreno, E, Bonito, A, Santacruz, C, Marcos, E, Septiem, J, Calero-Lillo, A, Alanez-Saavedra, J, Munoz-Collado, S, Lopez-Lara, M, Martinez, M, Herrero, E, Borda, F, Villar, O, Escartin, J, Blas, J, Ferrer, R, Egea, J, Rodriguez-Infante, A, Minguez-Ruiz, G, Carreno-Villarreal, G, Pire-Abaitua, G, Dziakova, J, Rodriguez, C, Aranda, M, Huguet, J, Borda-Arrizabalaga, N, Enriquez-Navascues, J, Echaniz, G, Ansorena, Y, Estaire-Gomez, M, Martinez-Pinedo, C, Barbero-Valenzuela, A, Ruiz-Garcia, P, Kraft, M, Gomez-Jurado, M, Pellino, G, Espin-Basany, E, Cotte, E, Panel, N, Goutard, C, de Angelis, N, Lauka, L, Shaikh, S, Osborne, L, Ramsay, G, Nichita, V, Bhandari, S, Sarmah, P, Bethune, R, Pringle, H, Massey, L, Fowler, G, Hamid, H, de Simone, B, Kynaston, J, Bradley, N, Stienstra, R, Gurjar, S, Mukherjee, T, Chandio, A, Ahmed, S, Singh, B, Runau, F, Chaudhri, S, Siaw, O, Sarveswaran, J, Miu, V, Ashmore, D, Darwich, H, Singh-Ranger, D, Singh, N, Shaban, M, Gareb, F, Petropolou, T, Polydorou, A, Dattani, M, Afzal, A, Bavikatte, A, Sebastian, B, Ward, N, Mishra, A, Manatakis, D, Agalianos, C, Tasis, N, Antonopoulou, M, Karavokyros, I, Charalabopoulos, A, Schizas, D, Baili, E, Syllaios, A, Karydakis, L, Vailas, M, Balalis, D, Korkolis, D, Plastiras, A, Rompou, A, Xenaki, S, Xynos, E, Chrysos, E, Venianaki, M, Christodoulidis, G, Perivoliotis, K, Tzovaras, G, Baloyiannis, I, Ho, M, Ng, S, Mak, T, Futaba, K, Santak, G, Simlesa, D, Cosic, J, Zukanovic, G, Kelly, M, Larkin, J, Mccormick, P, Mehigan, B, Connelly, T, Neary, P, Ryan, J, Mccullough, P, Al-Juaifari, M, Hammoodi, H, Abbood, A, Calabro, M, Muratore, A, La Terra, A, Farnesi, F, Feo, C, Fabbri, N, Pesce, A, Fazzin, M, Roscio, F, Clerici, F, Lucchi, A, Vittori, L, Agostinelli, L, Ripoli, M, Sambucci, D, Porta, A, Sinibaldi, G, Crescentini, G, Larcinese, A, Picone, E, Persiani, R, Biondi, A, Pezzuto, R, Lorenzon, L, Rizzo, G, Coco, C, D'Agostino, L, Spinelli, A, Sacchi, M, Carvello, M, Foppa, C, Maroli, A, Palini, G, Garulli, G, Zanini, N, Delrio, P, Rega, D, Carbone, F, Aversano, A, Pirozzolo, G, Recordare, A, D'Alimonte, L, Vignotto, C, Corbellini, C, Sampietro, G, Lorusso, L, Manzo, C, Ghignone, F, Ugolini, G, Montroni, I, Pasini, F, Ballabio, M, Bisagni, P, Armao, F, Longhi, M, Ghazouani, O, Galleano, R, Tamini, N, Oldani, M, Nespoli, L, Picciariello, A, Altomare, D, Tomasicchio, G, Lantone, G, Catena, F, Giuffrida, M, Annicchiarico, A, Perrone, G, Grossi, U, Santoro, G, Zanus, G, Iacomino, A, Novello, S, Passuello, N, Zucchella, M, Puca, L, Degiuli, M, Reddavid, R, Scabini, S, Aprile, A, Soriero, D, Fioravanti, E, Rottoli, M, Romano, A, Tanzanu, M, Belvedere, A, Mariani, N, Ceretti, A, Opocher, E, Gallo, G, Sammarco, G, de Paola, G, Pucciarelli, S, Marchegiani, F, Spolverato, G, Buzzi, G, Di Saverio, S, Meroni, P, Parise, C, Bottazzoli, E, Lapolla, P, Brachini, G, Cirillo, B, Mingoli, A, Sica, G, Siragusa, L, Bellato, V, Cerbo, D, de Pasqual, C, de Manzoni, G, di Cosmo, M, Alrayes, B, Qandeel, M, Hani, M, Rabadi, A, el Muhtaseb, M, Abdeen, B, Karmi, F, Zilinskas, J, Latkauskas, T, Tamelis, A, Pikuniene, I, Slenfuktas, V, Poskus, T, Kryzauskas, M, Jakubauskas, M, Mikalauskas, S, Jakubauskiene, L, Hassan, S, Altrabulsi, A, Abdulwahed, E, Ghmagh, R, Deeknah, A, Alshareea, E, Elhadi, M, Abujamra, S, Msherghi, A, Tababa, O, Majbar, M, Souadka, A, Benkabbou, A, Mohsine, R, Echiguer, S, Moctezuma-Velazquez, P, Salgado-Nesme, N, Vergara-Fernandez, O, Sainz-Hernandez, J, Alvarez-Bautista, F, Zakaria, A, Zakaria, Z, Wong, M, Ismail, R, Ibrahim, A, Abdullah, N, Julaihi, R, Bhat, S, O'Grady, G, Bissett, I, Lamme, B, Musters, G, Dinaux, A, Grotenhuis, B, Steller, E, Aalbers, A, Leeuwenburgh, M, Rutten, H, Burger, J, Bloemen, J, Ketelaers, S, Waqar, U, Chawla, T, Rauf, H, Rani, P, Talsma, A, Scheurink, L, van Praagh, J, Segelman, J, Nygren, J, Anderin, K, Tiefenthal, M, de Andres, B, Beltran de Heredia, J, Vazquez, A, Gomez, T, Golshani, P, Kader, R, Mohamed, A, Westerterp, M, Marinelli, A, Niemer, Q, Doornebosch, P, Shapiro, J, Vermaas, M, de Graaf, E, van Westreenen, H, Zwakman, M, van Dalsen, A, Vles, W, Nonner, J, Toorenvliet, B, Janssen, P, Verdaasdonk, E, Amelung, F, Peeters, K, Bahadoer, R, Holman, F, Heemskerk, J, Vosbeek, N, Leijtens, J, Taverne, S, Heijnen, B, El-Massoudi, Y, de Groot-Van Veen, I, Hoff, C, Jou-Valencia, D, Consten, E, Burghgraef, T, Geitenbeek, R, Hulshof, L, Slooter, G, Reudink, M, Bouvy, N, Wildeboer, A, Verstappen, S, Pennings, A, van den Hengel, B, Wijma, A, de Haan, J, de Nes, L, Heesink, V, Karsten, T, Heidsma, C, Koemans, W, Dekker, J, van der Zijden, C, Roos, D, Demirkiran, A, van der Burg, S, Oosterling, S, Hoogteijling, T, Wiering, B, Smeeing, D, Havenga, K, Lutfi, H, Tsimogiannis, K, Skoldberg, F, Folkesson, J, den Boer, F, van Schaik, T, van Gerven, P, Sietses, C, Hol, J, Boerma, E, Creemers, D, Schultz, J, Frivold, T, Riis, R, Gregussen, H, Busund, S, Sjo, O, Gaard, M, Krohn, N, Ersryd, A, Leung, E, Sultan, H, Hajjaj, B, Alhisi, A, Khader, A, Mendes, A, Semiao, M, Faria, L, Azevedo, C, da Costa Devesa, H, Martins, S, Jarimba, A, Marques, S, Ferreira, R, Oliveira, A, Ferreira, C, Pereira, R, Surlin, V, Graure, G, Ramboiu, S, Negoi, I, Ciubotaru, C, Stoica, B, Tanase, I, Negoita, V, Florea, S, Macau, F, Vasile, M, Stefanescu, V, Dimofte, G, Lunca, S, Roata, C, Musina, A, Garmanova, T, Agapov, M, Markaryan, D, Eduard, G, Yanishev, A, Abelevich, A, Bazaev, A, Rodimov, S, Filimonov, V, Melnikov, A, Suchkov, I, Drozdov, E, Kostromitskiy, D, Sjostrom, O, Matthiessen, P, Baban, B, Gadan, S, Jadid, K, Staffan, M, Park, J, Rydbeck, D, Lydrup, M, Buchwald, P, Jutesten, H, Darlin, L, Lindqvist, E, Nilsson, K, Larsson, P, Jangmalm, S, Kosir, J, Tomazic, A, Grosek, J, Bozic, T, Zazo, A, Zazo, R, Fares, H, Ayoub, K, Niazi, A, Mansour, A, Abbas, A, Tantoura, M, Hamdan, A, Hassan, N, Hasan, B, Saad, A, Sebai, A, Haddad, A, Maghrebi, H, Kacem, M, Yalkin, O, Samsa, M, Atak, I, Balci, B, Haberal, E, Dogan, L, Gecim, I, Akyol, C, Koc, M, Sivrikoz, E, Piyadeoglu, D, Avanagh, D, Sokmen, S, Bisgin, T, Gunenc, E, Guzel, M, Leventoglu, S, Yuksel, O, Kozan, R, Gobut, H, Cengiz, F, Erdinc, K, Acar, N, Kamer, E, Ozgur, I, Aydin, O, Keskin, M, Bulut, M, Kulle, C, Kara, Y, Sibic, O, Ozata, I, Bugra, D, Balik, E, Cakir, M, Alhardan, A, Colak, E, Aybar, A, Sari, A, Atici, S, Kaya, T, Dursun, A, Calik, B, Ozkan, O, Ulgur, H, Duzgun, O, Monson, J, George, S, Woods, K, Al-Eryani, F, Albakry, R, Coetzee, E, Boutall, A, Herman, A, Warden, C, Mugla, N, Forgan, T, Mia, I, Lambrechts, A, Greijdanus N. G., Wienholts K., Ubels S., Talboom K., Hannink G., Wolthuis A., de Lacy F. B., Lefevre J. H., Solomon M., Frasson M., Rotholtz N., Denost Q., Perez R. O., Konishi T., Panis Y., Rutegard M., Hompes R., Rosman C., van Workum F., Tanis P. J., de Wilt J. H. W., Bremers A. J. A., Ferenschild F. T., de Vriendt S., D'Hoore A., Bislenghi G., Farguell J., Lacy A. M., Atienza P. G., van Kessel C. S., Parc Y., Voron T., Collard M. K., Muriel J. S., Cholewa H., Mattioni L. A., Frontali A., Polle S. W., Polat F., Obihara N. J., Vailati B. B., Kusters M., Tuynmann J. B., Hazen S. J. A., Gruter A. A. J., Amano T., Fujiwara H., Salomon M., Ruiz H., Gonzalez R., Estefania D., Avellaneda N., Carrie A., Santillan M., Pachajoa D. A. P., Parodi M., Gielis M., Binder A. -D., Gurtler T., Riedl P., Badiani S., Berney C., Morgan M., Hollington P., da Silva N., Nair G., Ho Y. M., Lamparelli M., Kapadia R., Kroon H. M., Dudi-Venkata N. N., Liu J., Sammour T., Flamey N., Pattyn P., Chaoui A., Vansteenbrugge L., van den Broek N. E. J., Vanclooster P., de Gheldere C., Pletinckx P., Defoort B., Dewulf M., Slavchev M., Belev N., Atanasov B., Krastev P., Sokolov M., Maslyankov S., Gribnev P., Pavlov V., Ivanov T., Karamanliev M., Filipov E., Tonchev P., Aigner F., Mitteregger M., Allmer C., Seitinger G., Colucci N., Buchs N., Ris F., Toso C., Gialamas E., Vuagniaux A., Chautems R., Sauvain M. -O., Daester S., von Flue M., Guenin M. -O., Taha-Mehlitz S., Hess G. F., Martinek L., Skrovina M., Machackova M., Bencurik V., Uluk D., Pratschke J., Dittrich L. S., Guel-Klein S., Perez D., Grass J. -K., Melling N., Mueller S., Iversen L. H., Eriksen J. D., Baatrup G., Al-Najami I., Bjorsum-Meyer T., Teras J., Teras R. M., Monib F. A., Ahmed N. E. A. E., Alkady E., Ali A. K., Khedr G. A. E., Abdelaal A. S., Ashoush F. M. B., Ewedah M., Elshennawy E. M., Hussein M., Fernandez-Martinez D., Garcia-Florez L. J., Fernandez-Hevia M., Suarez-Sanchez A., Aretxabala I. D. H., Docampo I. L., Zabala J. G., Tejedor P., Morales Bernaldo de Quiros J. T., Quiroga I. B., Navarro-Sanchez A., Darias I. S., Fernandez C. L., de La Cruz Cuadrado C., Sanchez-Guillen L., Lopez-Rodriguez-Arias F., Soler-Silva A., Arroyo A., Bernal-Sprekelsen J. C., Gomez-Abril S. A., Gonzalvez P., Torres M. T., Sanchez T. R., Antona F. B., Lara J. E. S., Montero J. A. A., Mendoza-Moreno F., Diez-Alonso M., Matias-Garcia B., Quiroga-Valcarcel A., Colas-Ruiz E., Tasende-Presedo M. M., Fernandez-Hurtado I., Cifuentes-Rodenas J. A., Suarez M. C., Losada M., Hernandez M., Alonso A., Dieguez B., Serralta D., Quintana R. E. M., Lopez J. M. G., Pinto F. L., Nieto-Moreno E., Bonito A. C., Santacruz C. C., Marcos E. B., Septiem J. G., Calero-Lillo A., Alanez-Saavedra J., Munoz-Collado S., Lopez-Lara M., Martinez M. L., Herrero E. F., Borda F. J. G., Villar O. G., Escartin J., Blas J. L., Ferrer R., Egea J. G., Rodriguez-Infante A., Minguez-Ruiz G., Carreno-Villarreal G., Pire-Abaitua G., Dziakova J., Rodriguez C. S. -C., Aranda M. J. P., Huguet J. M. M., Borda-Arrizabalaga N., Enriquez-Navascues J. M., Echaniz G. E., Ansorena Y. S., Estaire-Gomez M., Martinez-Pinedo C., Barbero-Valenzuela A., Ruiz-Garcia P., Kraft M., Gomez-Jurado M. J., Pellino G., Espin-Basany E., Cotte E., Panel N., Goutard C. -A., de Angelis N., Lauka L., Shaikh S., Osborne L., Ramsay G., Nichita V. -I., Bhandari S., Sarmah P., Bethune R. M., Pringle H. C. M., Massey L., Fowler G. E., Hamid H. K. S., de Simone B. D., Kynaston J., Bradley N., Stienstra R. M., Gurjar S., Mukherjee T., Chandio A., Ahmed S., Singh B., Runau F., Chaudhri S., Siaw O., Sarveswaran J., Miu V., Ashmore D., Darwich H., Singh-Ranger D., Singh N., Shaban M., Gareb F., Petropolou T., Polydorou A., Dattani M., Afzal A., Bavikatte A., Sebastian B., Ward N., Mishra A., Manatakis D., Agalianos C., Tasis N., Antonopoulou M. -I., Karavokyros I., Charalabopoulos A., Schizas D., Baili E., Syllaios A., Karydakis L., Vailas M., Balalis D., Korkolis D., Plastiras A., Rompou A., Xenaki S., Xynos E., Chrysos E., Venianaki M., Christodoulidis G., Perivoliotis K., Tzovaras G., Baloyiannis I., Ho M. -F., Ng S. S., Mak T. W. -C., Futaba K., Santak G., Simlesa D., Cosic J., Zukanovic G., Kelly M. E., Larkin J. O., McCormick P. H., Mehigan B. J., Connelly T. M., Neary P., Ryan J., McCullough P., Al-Juaifari M. A., Hammoodi H., Abbood A. H., Calabro M., Muratore A., La Terra A., Farnesi F., Feo C. V., Fabbri N., Pesce A., Fazzin M., Roscio F., Clerici F., Lucchi A., Vittori L., Agostinelli L., Ripoli M. C., Sambucci D., Porta A., Sinibaldi G., Crescentini G., Larcinese A., Picone E., Persiani R., Biondi A., Pezzuto R., Lorenzon L., Rizzo G., Coco C., D'Agostino L., Spinelli A., Sacchi M. M., Carvello M., Foppa C., Maroli A., Palini G. M., Garulli G., Zanini N., Delrio P., Rega D., Carbone F., Aversano A., Pirozzolo G., Recordare A., D'Alimonte L., Vignotto C., Corbellini C., Sampietro G. M., Lorusso L., Manzo C. A., Ghignone F., Ugolini G., Montroni I., Pasini F., Ballabio M., Bisagni P., Armao F. T., Longhi M., Ghazouani O., Galleano R., Tamini N., Oldani M., Nespoli L., Picciariello A., Altomare D. F., Tomasicchio G., Lantone G., Catena F., Giuffrida M., Annicchiarico A., Perrone G., Grossi U., Santoro G. A., Zanus G., Iacomino A., Novello S., Passuello N., Zucchella M., Puca L., deGiuli M., Reddavid R., Scabini S., Aprile A., Soriero D., Fioravanti E., Rottoli M., Romano A., Tanzanu M., Belvedere A., Mariani N. M., Ceretti A. P., Opocher E., Gallo G., Sammarco G., de Paola G., Pucciarelli S., Marchegiani F., Spolverato G., Buzzi G., Di Saverio S., Meroni P., Parise C., Bottazzoli E. I., Lapolla P., Brachini G., Cirillo B., Mingoli A., Sica G., Siragusa L., Bellato V., Cerbo D., de Pasqual C. A., de Manzoni G., di Cosmo M. A., Alrayes B. M. H., Qandeel M. W. M., Hani M. B., Rabadi A., el Muhtaseb M. S., Abdeen B., Karmi F., Zilinskas J., Latkauskas T., Tamelis A., Pikuniene I., Slenfuktas V., Poskus T., Kryzauskas M., Jakubauskas M., Mikalauskas S., Jakubauskiene L., Hassan S. Y., Altrabulsi A., Abdulwahed E., Ghmagh R., Deeknah A., Alshareea E., Elhadi M., Abujamra S., Msherghi A. A., Tababa O. W. E., Majbar M. A., Souadka A., Benkabbou A., Mohsine R., Echiguer S., Moctezuma-Velazquez P., Salgado-Nesme N., Vergara-Fernandez O., Sainz-Hernandez J. C., Alvarez-Bautista F. E., Zakaria A. D., Zakaria Z., Wong M. P. K., Ismail R., Ibrahim A. F., Abdullah N. A. N., Julaihi R., Bhat S., O'Grady G., Bissett I., Lamme B., Musters G. D., Dinaux A. M., Grotenhuis B. A., Steller E. J., Aalbers A. G. J., Leeuwenburgh M. M., Rutten H. J. T., Burger J. W. A., Bloemen J. G., Ketelaers S. H. J., Waqar U., Chawla T., Rauf H., Rani P., Talsma A. K., Scheurink L., van Praagh J. B., Segelman J., Nygren J., Anderin K., Tiefenthal M., de Andres B., Beltran de Heredia J. P., Vazquez A., Gomez T., Golshani P., Kader R., Mohamed A., Westerterp M., Marinelli A., Niemer Q., Doornebosch P. G., Shapiro J., Vermaas M., de Graaf E. J. R., van Westreenen H. L., Zwakman M., van Dalsen A. D., Vles W. J., Nonner J., Toorenvliet B. R., Janssen P. T. J., Verdaasdonk E. G. G., Amelung F. J., Peeters K. C. M. J., Bahadoer R. R., Holman F. A., Heemskerk J., Vosbeek N., Leijtens J. W. A., Taverne S. B. M., Heijnen B. H. M., El-Massoudi Y., de Groot-Van Veen I., Hoff C., Jou-Valencia D., Consten E. C. J., Burghgraef T. A., Geitenbeek R., Hulshof L. G. W. L., Slooter G. D., Reudink M., Bouvy N. D., Wildeboer A. C. L., Verstappen S., Pennings A. J., van den Hengel B., Wijma A. G., de Haan J., de Nes L. C. F., Heesink V., Karsten T., Heidsma C. M., Koemans W. J., Dekker J. -W. T., van der Zijden C. J., Roos D., Demirkiran A., van der Burg S., Oosterling S. J., Hoogteijling T. J., Wiering B., Smeeing D. P. J., Havenga K., Lutfi H., Tsimogiannis K., Skoldberg F., Folkesson J., den Boer F., van Schaik T. G., van Gerven P., Sietses C., Hol J. C., Boerma E. -J. G., Creemers D. M. J., Schultz J. K., Frivold T., Riis R., Gregussen H., Busund S., Sjo O. H., Gaard M., Krohn N., Ersryd A. L., Leung E., Sultan H., Hajjaj B. N., Alhisi A. J., Khader A. A. E., Mendes A. F. D., Semiao M., Faria L. Q., Azevedo C., da Costa Devesa H. M., Martins S. F., Jarimba A. M. R., Marques S. M. R., Ferreira R. M., Oliveira A., Ferreira C., Pereira R., Surlin V. M., Graure G. M., Ramboiu S. P. S. D., Negoi I., Ciubotaru C., Stoica B., Tanase I., Negoita V. M., Florea S., Macau F., Vasile M., Stefanescu V., Dimofte G. -M., Lunca S., Roata C. -E., Musina A. -M., Garmanova T., Agapov M. N., Markaryan D. G., Eduard G., Yanishev A., Abelevich A., Bazaev A., Rodimov S. V., Filimonov V. B., Melnikov A. A., Suchkov I. A., Drozdov E. S., Kostromitskiy D. N., Sjostrom O., Matthiessen P., Baban B., Gadan S., Jadid K. D., Staffan M., Park J. M., Rydbeck D., Lydrup M. -L., Buchwald P., Jutesten H., Darlin L., Lindqvist E., Nilsson K., Larsson P. -A., Jangmalm S., Kosir J. A., Tomazic A., Grosek J., Bozic T. K., Zazo A., Zazo R., Fares H., Ayoub K., Niazi A., Mansour A., Abbas A., Tantoura M., Hamdan A., Hassan N., Hasan B., Saad A., Sebai A., Haddad A., Maghrebi H., Kacem M., Yalkin O., Samsa M. V., Atak I., Balci B., Haberal E., Dogan L., Gecim I. E., Akyol C., Koc M. A., Sivrikoz E., Piyadeoglu D., Avanagh D. O., Sokmen S., Bisgin T., Gunenc E., Guzel M., Leventoglu S., Yuksel O., Kozan R., Gobut H., Cengiz F., Erdinc K., Acar N. C., Kamer E., Ozgur I., Aydin O., Keskin M., Bulut M. T., Kulle C. B., Kara Y., Sibic O., Ozata I. H., Bugra D., Balik E., Cakir M., Alhardan A., Colak E., Aybar A. B. C., Sari A. C., Atici S. D., Kaya T., Dursun A., Calik B., Ozkan O. F., Ulgur H. S., Duzgun O., Monson J., George S., Woods K., Al-Eryani F., Albakry R., Coetzee E., Boutall A., Herman A., Warden C., Mugla N., Forgan T., Mia I., and Lambrechts A.
- Abstract
Background: The optimal treatment of anastomotic leak after rectal cancer resection is unclear. This worldwide cohort study aimed to provide an overview of four treatment strategies applied. Methods: Patients from 216 centres and 45 countries with anastomotic leak after rectal cancer resection between 2014 and 2018 were included. Treatment was categorized as salvage surgery, faecal diversion with passive or active (vacuum) drainage, and no primary/secondary faecal diversion. The primary outcome was 1-year stoma-free survival. In addition, passive and active drainage were compared using propensity score matching (2: 1). Results: Of 2470 evaluable patients, 388 (16.0 per cent) underwent salvage surgery, 1524 (62.0 per cent) passive drainage, 278 (11.0 per cent) active drainage, and 280 (11.0 per cent) had no faecal diversion. One-year stoma-free survival rates were 13.7, 48.3, 48.2, and 65.4 per cent respectively. Propensity score matching resulted in 556 patients with passive and 278 with active drainage. There was no statistically significant difference between these groups in 1-year stoma-free survival (OR 0.95, 95 per cent c.i. 0.66 to 1.33), with a risk difference of -1.1 (95 per cent c.i. -9.0 to 7.0) per cent. After active drainage, more patients required secondary salvage surgery (OR 2.32, 1.49 to 3.59), prolonged hospital admission (an additional 6 (95 per cent c.i. 2 to 10) days), and ICU admission (OR 1.41, 1.02 to 1.94). Mean duration of leak healing did not differ significantly (an additional 12 (-28 to 52) days). Conclusion: Primary salvage surgery or omission of faecal diversion likely correspond to the most severe and least severe leaks respectively. In patients with diverted leaks, stoma-free survival did not differ statistically between passive and active drainage, although the increased risk of secondary salvage surgery and ICU admission suggests residual confounding.
- Published
- 2023
5. P489 Systematic review and meta-analysis of the accuracy of computer-aided diagnosis in identifying endoscopic remission in Ulcerative Colitis
- Author
-
Gautham, A, primary and Kader, R, additional
- Published
- 2024
- Full Text
- View/download PDF
6. Novel Application of Artificial Intelligence to Measure Colonoscopy Inspection Time
- Author
-
Kader, R., additional, Carvalho, T. D., additional, Brandao, P., additional, Toth, D., additional, Hussein, M., additional, Aslam, N., additional, Ahmad, O., additional, Seward, E., additional, Vega, R., additional, Mountney, P., additional, Stoyanov, D., additional, and Lovat, L., additional
- Published
- 2023
- Full Text
- View/download PDF
7. Automated Detection of Rectal Retroflexion Using Artificial Intelligence – A Multi-Centre Study
- Author
-
Kader, R., additional, Carvalho, T. D., additional, Brandao, P., additional, Toth, D., additional, Hussein, M., additional, Aslam, N., additional, Ahmad, O., additional, Seward, E., additional, Vega, R., additional, Mountney, P., additional, Stoyanov, D., additional, and Lovat, L., additional
- Published
- 2023
- Full Text
- View/download PDF
8. The Additive Flexible Weibull Extension-Lomax Distribution: Properties and Estimation with Applications to COVID-19 Data
- Author
-
N. Salem, H., primary, R. AL-Dayian, G., additional, A. EL-Helbawy, A., additional, and E. Abd EL-Kader, R., additional
- Published
- 2022
- Full Text
- View/download PDF
9. AB0241 COGNITIVE FRAILTY AND RISK OF FALLS AMONG EGYPTIAN OLDER ADULTS WITH RHEUMATOID ARTHRITIS
- Author
-
Elziaty, R. A., primary and Abdel Kader, R. M., additional
- Published
- 2022
- Full Text
- View/download PDF
10. TRANSFERABILITY OF A CONVOLUTIONAL NEURAL NETWORK TO CHARACTERISE COLORECTAL POLYPS
- Author
-
Kader, R., additional, Mejias, A., additional, Shahraz, I., additional, Hebbar, S., additional, Brandao, P., additional, Ahmad, O., additional, Hussein, M., additional, Toth, D., additional, Vega, R., additional, Seward, E., additional, Kohoutova, D., additional, Rejchrt, S., additional, Bures, J., additional, Mountney, P., additional, Stoyanov, D., additional, and Lovat, L.B., additional
- Published
- 2022
- Full Text
- View/download PDF
11. SYSTEMATIC REVIEW AND META-ANALYSIS: THE GLOBAL THREE-YEAR POST-COLONOSCOPY COLORECTAL CANCER RATE AS PER THE WORLD ENDOSCOPY ORGANIZATION METHODOLOGY
- Author
-
Kader, R., additional, Hadjinicolaou, A.V, additional, Burr, N.E, additional, Bassett, P., additional, Pedersen, L., additional, Valori, R., additional, Chand, M., additional, Stoyanov, D., additional, and Lovat, L.B, additional
- Published
- 2022
- Full Text
- View/download PDF
12. COMPUTER AIDED DIAGNOSIS FOR THE CHARACTERISATION OF DYSPLASIA IN BARRETT’S ESOPHAGUS WITH MAGNIFICATION ENDOSCOPY ON I-SCAN IMAGING
- Author
-
Hussein, M., additional, Lines, D., additional, González-Bueno Puyal, J., additional, Bowman, N., additional, Sehgal, V., additional, Toth, D., additional, Everson, M., additional, Ahmad, O., additional, Kader, R., additional, Esteban, J.M., additional, Bischopps, R., additional, Banks, M., additional, Haefner, M., additional, Mountney, P., additional, Stoyanov, D., additional, Lovat, L., additional, and Haidry, R., additional
- Published
- 2022
- Full Text
- View/download PDF
13. AUTOMATED MEASUREMENT OF COLONOSCOPY WITHDRAWAL TIME USING CONVOLUTIONAL NEURAL NETWORKS
- Author
-
Kader, R., additional, Carvalho, T.d., additional, Oh Ga, Y., additional, Brandao, P., additional, Leung, S.-P., additional, Toth, D., additional, Vega, R., additional, Seward, E., additional, Mountney, P., additional, Stoyanov, D., additional, and Lovat, L.B., additional
- Published
- 2022
- Full Text
- View/download PDF
14. Current applications and challenges in large language models for patient care: a systematic review.
- Author
-
Busch F, Hoffmann L, Rueger C, van Dijk EH, Kader R, Ortiz-Prado E, Makowski MR, Saba L, Hadamitzky M, Kather JN, Truhn D, Cuocolo R, Adams LC, and Bressem KK
- Abstract
Background: The introduction of large language models (LLMs) into clinical practice promises to improve patient education and empowerment, thereby personalizing medical care and broadening access to medical knowledge. Despite the popularity of LLMs, there is a significant gap in systematized information on their use in patient care. Therefore, this systematic review aims to synthesize current applications and limitations of LLMs in patient care., Methods: We systematically searched 5 databases for qualitative, quantitative, and mixed methods articles on LLMs in patient care published between 2022 and 2023. From 4349 initial records, 89 studies across 29 medical specialties were included. Quality assessment was performed using the Mixed Methods Appraisal Tool 2018. A data-driven convergent synthesis approach was applied for thematic syntheses of LLM applications and limitations using free line-by-line coding in Dedoose., Results: We show that most studies investigate Generative Pre-trained Transformers (GPT)-3.5 (53.2%, n = 66 of 124 different LLMs examined) and GPT-4 (26.6%, n = 33/124) in answering medical questions, followed by patient information generation, including medical text summarization or translation, and clinical documentation. Our analysis delineates two primary domains of LLM limitations: design and output. Design limitations include 6 second-order and 12 third-order codes, such as lack of medical domain optimization, data transparency, and accessibility issues, while output limitations include 9 second-order and 32 third-order codes, for example, non-reproducibility, non-comprehensiveness, incorrectness, unsafety, and bias., Conclusions: This review systematically maps LLM applications and limitations in patient care, providing a foundational framework and taxonomy for their implementation and evaluation in healthcare settings., Competing Interests: Competing interests: JNK declares consulting services for Owkin, France; DoMore Diagnostics, Norway; Panakeia, UK, and Scailyte, Basel, Switzerland; furthermore JNK holds shares in Kather Consulting, Dresden, Germany; and StratifAI GmbH, Dresden, Germany, and has received honoraria for lectures and advisory board participation by AstraZeneca, Bayer, Eisai, MSD, BMS, Roche, Pfizer and Fresenius. DT holds shares in StratifAI GmbH, Dresden, Germany and has received honoraria for lectures by Bayer. KKB reports grants from the European Union (101079894) and Wilhelm-Sander Foundation; participation on a Data Safety Monitoring Board or Advisory Board for the EU Horizon 2020 LifeChamps project (875329) and the EU IHI Project IMAGIO (101112053); speaker Fees for Canon Medical Systems Corporation and GE HealthCare. RK receives medical consultancy fees from Odin Vision. The remaining authors declare no competing interests., (© 2025. The Author(s).)
- Published
- 2025
- Full Text
- View/download PDF
15. Emerging roles of hydrogen sulfide-metabolizing enzymes in cancer.
- Author
-
Dawoud A, Youness RA, Elsayed K, Nafae H, Allam H, Saad HA, Bourquin C, Szabo C, Abdel-Kader R, and Gad MZ
- Subjects
- Humans, Animals, Hydrogen Sulfide metabolism, Neoplasms metabolism, Neoplasms enzymology
- Abstract
Gasotransmitters play crucial roles in regulating many physiological processes, including cell signaling, cellular proliferation, angiogenesis, mitochondrial function, antioxidant production, nervous system functions and immune responses. Hydrogen sulfide (H
2 S) is the most recently identified gasotransmitter, which is characterized by its biphasic behavior. At low concentrations, H2 S promotes cellular bioenergetics, whereas at high concentrations, it can exert cytotoxic effects. Cystathionine β-synthetase (CBS), cystathionine-γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST), and cysteinyl-tRNA synthetase 2 (CARS2) are pivotal players in H2 S biosynthesis in mammalian cells and tissues. The focus of this review is the regulation of the various pathways involved in H2 S metabolism in various forms of cancer. Key enzymes in this process include the sulfide oxidation unit (SOU), which includes sulfide:quinone oxidoreductase (SQOR), human ethylmalonic encephalopathy protein 1 (hETHE1), rhodanese, sulfite oxidase (SUOX/SO), and cytochrome c oxidase (CcO) enzymes. Furthermore, the potential role of H2 S methylation processes mediated by thiol S-methyltransferase (TMT) and thioether S-methyltransferase (TEMT) is outlined in cancer biology, with potential opportunities for targeting them for clinical translation. In order to understand the role of H2 S in oncogenesis and tumor progression, one must appreciate the intricate interplay between H2 S-synthesizing and H2 S-catabolizing enzymes.- Published
- 2024
- Full Text
- View/download PDF
16. Systematic Review and Meta-analysis: The Three-year Post-colonoscopy Colorectal Cancer Rate as per the World Endoscopy Organization Methodology.
- Author
-
Kader R, Hadjinicolaou AV, Burr NE, Bassett P, Ahmad OF, Pedersen L, Chand M, Valori R, Stoyanov D, and Lovat LB
- Abstract
Background & Aims: In 2018, the World Endoscopy Organization (WEO) introduced standardized methods for calculating post-colonoscopy colorectal cancer-3yr rates (PCCRC-3yr). This systematic review aimed to calculate the global PCCRC-3yr according to the WEO methodology, its change over time, and to measure the association between risk factors and PCCRC occurrences., Methods: We searched 5 databases from inception until January 2024 for PCCRC-3yr studies that strictly adhered to the WEO methodology. The overall pooled PCCRC-3yr was calculated. For risk factors and time-trend analyses, the pooled PCCRC-3yr and odds ratios (ORs) of subgroups were compared., Results: Several studies failed to adhere to the WEO methodology. Eight studies from 4 Western European and 2 Northern American countries were included, totalling 220,106 detected-colorectal cancers (CRCs) and 18,148 PCCRCs between 2002 and 2017. The pooled Western World PCCRC-3yr was 7.5% (95% confidence interval [CI], 6.4%-8.7%). The PCCRC-3yr significantly (P < .05) decreased from 7.9% (95% CI, 6.6%-9.4%) in 2006 to 6.7% (95% CI, 6.1%-7.3%) in 2012 (OR, 0.79; 95% CI, 0.72-0.87). There were significantly higher rates for people with inflammatory bowel disease (PCCRC-3yr, 29.3%; OR, 6.17; 95% CI, 4.73-8.06), prior CRC (PCCRC-3yr, 29.8%; OR, 3.03; 95% CI, 1.34-4.72), proximal CRC (PCCRC-3yr, 8.6%; OR, 1.51; 95% CI, 1.41-1.61), diverticular disease (PCCRC 3-yr, 11.6%; OR, 1.74; 95% CI, 1.37-2.10), and female sex (PCCRC-3yr, 7.9%; OR, 1.15; 95% CI, 1.11-1.20)., Conclusion: According to the WEO methodology, the Western World PCCRC-3yr was 7.5%. Reassuringly, this has decreased over time, but further work is required to identify the reasons for PCCRCs, especially in higher-risk groups. We devised a WEO methodology checklist to increase its adoption and standardise the categorization of patients in future PCCRC-3yr studies., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
17. SimCol3D - 3D reconstruction during colonoscopy challenge.
- Author
-
Rau A, Bano S, Jin Y, Azagra P, Morlana J, Kader R, Sanderson E, Matuszewski BJ, Lee JY, Lee DJ, Posner E, Frank N, Elangovan V, Raviteja S, Li Z, Liu J, Lalithkumar S, Islam M, Ren H, Lovat LB, Montiel JMM, and Stoyanov D
- Subjects
- Humans, Colorectal Neoplasms diagnostic imaging, Colonic Polyps diagnostic imaging, Imaging, Three-Dimensional methods, Colonoscopy
- Abstract
Colorectal cancer is one of the most common cancers in the world. While colonoscopy is an effective screening technique, navigating an endoscope through the colon to detect polyps is challenging. A 3D map of the observed surfaces could enhance the identification of unscreened colon tissue and serve as a training platform. However, reconstructing the colon from video footage remains difficult. Learning-based approaches hold promise as robust alternatives, but necessitate extensive datasets. Establishing a benchmark dataset, the 2022 EndoVis sub-challenge SimCol3D aimed to facilitate data-driven depth and pose prediction during colonoscopy. The challenge was hosted as part of MICCAI 2022 in Singapore. Six teams from around the world and representatives from academia and industry participated in the three sub-challenges: synthetic depth prediction, synthetic pose prediction, and real pose prediction. This paper describes the challenge, the submitted methods, and their results. We show that depth prediction from synthetic colonoscopy images is robustly solvable, while pose estimation remains an open research question., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Danail Stoyanov reports financial support was provided by Medtronic plc. Danail Stoyanov reports a relationship with Odin Medical Ltd. that includes: equity or stocks. Laurence Lovat and Rawen Kader report a relationship with Olympus Corporation that includes: consulting or advisory., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF
18. High Levels of NfL, GFAP, TAU, and UCH-L1 as Potential Predictor Biomarkers of Severity and Lethality in Acute COVID-19.
- Author
-
Salvio AL, Fernandes RA, Ferreira HFA, Duarte LA, Gutman EG, Raposo-Vedovi JV, Filho CHFR, da Costa Nunes Pimentel Coelho WL, Passos GF, Andraus MEC, da Costa Gonçalves JP, Cavalcanti MG, Amaro MP, Kader R, de Andrade Medronho R, Figueiredo CP, Amado-Leon LA, and Alves-Leon SV
- Subjects
- Humans, Male, Female, Middle Aged, Aged, Adult, SARS-CoV-2, Ferritins blood, Viral Load, Glial Fibrillary Acidic Protein blood, tau Proteins blood, COVID-19 blood, COVID-19 mortality, COVID-19 diagnosis, Ubiquitin Thiolesterase blood, Biomarkers blood, Neurofilament Proteins blood, Severity of Illness Index
- Abstract
Few studies showed that neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), total tubulin-associated unit (TAU), and ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) may be related to neurological manifestations and severity during and after SARS-CoV-2 infection. The objective of this work was to investigate the relationship among nervous system biomarkers (NfL, TAU, GFAP, and UCH-L1), biochemical parameters, and viral loads with heterogeneous outcomes in a cohort of severe COVID-19 patients admitted in Intensive Care Unit (ICU) of a university hospital. For that, 108 subjects were recruited within the first 5 days at ICU. In parallel, 16 mild COVID-19 patients were enrolled. Severe COVID-19 group was divided between "deceased" and "survivor." All subjects were positive for SARS-CoV-2 detection. NfL, total TAU, GFAP, and UCH-L1 quantification in plasma was performed using SIMOA SR-X platform. Of 108 severe patients, 36 (33.33%) presented neurological manifestation and 41 (37.96%) died. All four biomarkers - GFAP, NfL, TAU, and UCH-L1 - were significantly higher among deceased patients in comparison to survivors (p < 0.05). Analyzing biochemical biomarkers, higher Peak Serum Ferritin, D-Dimer Peak, Gamma-glutamyltransferase, and C-Reactive Protein levels were related to death (p < 0.0001). In multivariate analysis, GFAP, NfL, TAU, UCH-L1, and Peak Serum Ferritin levels were correlated to death. Regarding SARS-CoV-2 viral load, no statistical difference was observed for any group. Thus, Ferritin, NFL, GFAP, TAU, and UCH-L1 are early biomarkers of severity and lethality of SARS-COV-2 infection and may be important tools for therapeutic decision-making in the acute phase of disease., (© 2023. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
19. Cancer Biology or Ineffective Surveillance? A Multicentre Retrospective Analysis of Colitis-Associated Post-Colonoscopy Colorectal Cancers.
- Author
-
Kabir M, Thomas-Gibson S, Ahmad A, Kader R, Al-Hillawi L, Mcguire J, David L, Shah K, Rao R, Vega R, East JE, Faiz OD, Hart AL, and Wilson A
- Subjects
- Humans, Male, Retrospective Studies, Female, Middle Aged, Risk Factors, Adult, Aged, Colonoscopy methods, Colonoscopy statistics & numerical data, Colorectal Neoplasms pathology, Colorectal Neoplasms etiology, Colorectal Neoplasms diagnosis, Colorectal Neoplasms epidemiology
- Abstract
Background and Aims: Inflammatory bowel disease [IBD] is associated with high rates of post-colonoscopy colorectal cancer [PCCRC], but further in-depth qualitative analyses are required to determine whether they result from inadequate surveillance or aggressive IBD cancer evolution., Methods: All IBD patients who had a colorectal cancer [CRC] diagnosed between January 2015 and July 2019 and a recent [<4 years] surveillance colonoscopy at one of four English hospital trusts underwent root cause analyses as recommended by the World Endoscopy Organisation to identify plausible PCCRC causative factors., Results: In total, 61% [n = 22/36] of the included IBD CRCs were PCCRCs. They developed in patients with high cancer risk factors [77.8%; n = 28/36] requiring annual surveillance, yet 57.1% [n = 20/35] had inappropriately delayed surveillance. Most PCCRCs developed in situations where [i] an endoscopically unresectable lesion was detected [40.9%; n = 9/22], [ii] there was a deviation from the planned management pathway [40.9%; n = 9/22], such as service-, clinician- or patient-related delays in acting on a detected lesion, or [iii] lesions were potentially missed as they were typically located within areas of active inflammation or post-inflammatory change [36.4%; n = 8/22]., Conclusions: IBD PCCRC prevention will require more proactive strategies to reduce endoscopic inflammatory burden, and to improve lesion optical characterization, adherence to recommended surveillance intervals, and patient acceptance of prophylactic colectomy. However, the significant proportion appearing to originate from non-adenomatous-looking mucosa which fail to yield neoplasia on biopsy yet display aggressive cancer evolution highlights the limitations of current surveillance. Emerging molecular biomarkers may play a role in enhancing cancer risk stratification in future clinical practice., (© The Author(s) 2023. Published by Oxford University Press on behalf of European Crohn’s and Colitis Organisation. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
20. Dual targeting of H 2 S synthesizing enzymes; cystathionine β-synthase and cystathionine γ-lyase by miR-939-5p effectively curbs triple negative breast cancer.
- Author
-
Nafea H, Youness RA, Dawoud A, Khater N, Manie T, Abdel-Kader R, Bourquin C, Szabo C, and Gad MZ
- Abstract
Introduction: Hydrogen sulfide (H
2 S) has been recently scrutinized for its critical role in aggravating breast cancer (BC) tumorigenicity. Several cancers aberrantly express H2 S synthesizing enzymes; Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). However, their levels and interdependence in BC require further studies., Objectives: Firstly, this study aimed to demonstrate a comparative expression profile of H2 S synthesizing enzymes in BC vs normal tissue. Moreover, to investigate the reciprocal relationship between CBS and CSE and highlight the importance of dual targeting. Finally, to search for a valid dual repressor of the H2 S synthesizing enzymes that could cease H2 S production and reduce TNBC pathogenicity., Methods: Pairwise analysis of tumor vs. normal tissues of 40 BC patients was carried out. The TNBC cell line MDA-MB-231 was transfected with oligonucleotides to study the H2 S mediated molecular mechanisms. In silico screening was performed to identify dual regulator(s) for CBS and CSE. Gene expression analysis was performed using qRT-PCR and was confirmed on protein level using Western blot. TNBC hallmarks were evaluated using MTT, migration, and clonogenicity assays. H2 S levels were detected using a AzMc fluorescent probe., Results: BC tissues exhibited elevated levels of both CBS and CSE. Interestingly, upon CBS knockdown, CSE levels increased compensating for H2 S production in TNBC cells, underlining the importance of dually targeting both enzymes in TNBC. In silico screening suggested miR-939-5p as a regulator of both CBS and CSE with high binding scores. Low expression levels of miR-939-5p were found in BC tissues, especially the aggressive subtypes. Ectopic expression of miR-939-5p significantly repressed CBS and CSE transcript and protein levels, diminished H2 S production and attenuated TNBC hallmarks. Moreover, it improved the immune surveillance potency of TNBC cells through up regulating the NKG2D ligands, MICB and ULBP2 and reducing the immune suppressive cytokine IL-10., Conclusion: This study sheds light on the reciprocal relationship between CBS and CSE and on the importance of their dual targeting, particularly in TNBC. It also postulates miR-939-5p as a potent dual repressor for CBS and CSE overcoming their redundancy in H2 S production, a mechanism that can potentially attenuate TNBC oncogenicity and improves the immunogenic response., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2023 The Authors.)- Published
- 2023
- Full Text
- View/download PDF
21. Polyp characterization using deep learning and a publicly accessible polyp video database.
- Author
-
Kader R, Cid-Mejias A, Brandao P, Islam S, Hebbar S, Puyal JG, Ahmad OF, Hussein M, Toth D, Mountney P, Seward E, Vega R, Stoyanov D, and Lovat LB
- Subjects
- Humans, Colonoscopy methods, Narrow Band Imaging methods, Colonic Polyps diagnostic imaging, Colonic Polyps pathology, Colorectal Neoplasms pathology, Deep Learning, Adenoma diagnostic imaging, Adenoma pathology
- Abstract
Objectives: Convolutional neural networks (CNN) for computer-aided diagnosis of polyps are often trained using high-quality still images in a single chromoendoscopy imaging modality with sessile serrated lesions (SSLs) often excluded. This study developed a CNN from videos to classify polyps as adenomatous or nonadenomatous using standard narrow-band imaging (NBI) and NBI-near focus (NBI-NF) and created a publicly accessible polyp video database., Methods: We trained a CNN with 16,832 high and moderate quality frames from 229 polyp videos (56 SSLs). It was evaluated with 222 polyp videos (36 SSLs) across two test-sets. Test-set I consists of 14,320 frames (157 polyps, 111 diminutive). Test-set II, which is publicly accessible, 3317 video frames (65 polyps, 41 diminutive), which was benchmarked with three expert and three nonexpert endoscopists., Results: Sensitivity for adenoma characterization was 91.6% in test-set I and 89.7% in test-set II. Specificity was 91.9% and 88.5%. Sensitivity for diminutive polyps was 89.9% and 87.5%; specificity 90.5% and 88.2%. In NBI-NF, sensitivity was 89.4% and 89.5%, with a specificity of 94.7% and 83.3%. In NBI, sensitivity was 85.3% and 91.7%, with a specificity of 87.5% and 90.0%, respectively. The CNN achieved preservation and incorporation of valuable endoscopic innovations (PIVI)-1 and PIVI-2 thresholds for each test-set. In the benchmarking of test-set II, the CNN was significantly more accurate than nonexperts (13.8% difference [95% confidence interval 3.2-23.6], P = 0.01) with no significant difference with experts., Conclusions: A single CNN can differentiate adenomas from SSLs and hyperplastic polyps in both NBI and NBI-NF. A publicly accessible NBI polyp video database was created and benchmarked., (© 2023 The Authors. Digestive Endoscopy published by John Wiley & Sons Australia, Ltd on behalf of Japan Gastroenterological Endoscopy Society.)
- Published
- 2023
- Full Text
- View/download PDF
22. Automated colonoscopy withdrawal phase duration estimation using cecum detection and surgical tasks classification.
- Author
-
De Carvalho T, Kader R, Brandao P, González-Bueno Puyal J, Lovat LB, Mountney P, and Stoyanov D
- Abstract
Colorectal cancer is the third most common type of cancer with almost two million new cases worldwide. They develop from neoplastic polyps, most commonly adenomas, which can be removed during colonoscopy to prevent colorectal cancer from occurring. Unfortunately, up to a quarter of polyps are missed during colonoscopies. Studies have shown that polyp detection during a procedure correlates with the time spent searching for polyps, called the withdrawal time. The different phases of the procedure (cleaning, therapeutic, and exploration phases) make it difficult to precisely measure the withdrawal time, which should only include the exploration phase. Separating this from the other phases requires manual time measurement during the procedure which is rarely performed. In this study, we propose a method to automatically detect the cecum, which is the start of the withdrawal phase, and to classify the different phases of the colonoscopy, which allows precise estimation of the final withdrawal time. This is achieved using a Resnet for both detection and classification trained with two public datasets and a private dataset composed of 96 full procedures. Out of 19 testing procedures, 18 have their withdrawal time correctly estimated, with a mean error of 5.52 seconds per minute per procedure., Competing Interests: D.S: Odin Vision Ltd (I, S), D.S: Digital Surgery Ltd (E), L.L: Odin Vision Ltd (I)., (Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.)
- Published
- 2023
- Full Text
- View/download PDF
23. Lynch syndrome: from detection to treatment.
- Author
-
Williams MH, Hadjinicolaou AV, Norton BC, Kader R, and Lovat LB
- Abstract
Lynch syndrome (LS) is an inherited cancer predisposition syndrome associated with high lifetime risk of developing tumours, most notably colorectal and endometrial. It arises in the context of pathogenic germline variants in one of the mismatch repair genes, that are necessary to maintain genomic stability. LS remains underdiagnosed in the population despite national recommendations for empirical testing in all new colorectal and endometrial cancer cases. There are now well-established colorectal cancer surveillance programmes, but the high rate of interval cancers identified, coupled with a paucity of high-quality evidence for extra-colonic cancer surveillance, means there is still much that can be achieved in diagnosis, risk-stratification and management. The widespread adoption of preventative pharmacological measures is on the horizon and there are exciting advances in the role of immunotherapy and anti-cancer vaccines for treatment of these highly immunogenic LS-associated tumours. In this review, we explore the current landscape and future perspectives for the identification, risk stratification and optimised management of LS with a focus on the gastrointestinal system. We highlight the current guidelines on diagnosis, surveillance, prevention and treatment and link molecular disease mechanisms to clinical practice recommendations., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Williams, Hadjinicolaou, Norton, Kader and Lovat.)
- Published
- 2023
- Full Text
- View/download PDF
24. Identifying key mechanisms leading to visual recognition errors for missed colorectal polyps using eye-tracking technology.
- Author
-
Ahmad OF, Mazomenos E, Chadebecq F, Kader R, Hussein M, Haidry RJ, Puyal JG, Brandao P, Toth D, Mountney P, Seward E, Vega R, Stoyanov D, and Lovat LB
- Subjects
- Humans, Eye-Tracking Technology, Artificial Intelligence, Colonoscopy methods, Colonic Polyps diagnosis, Colonic Polyps pathology, Colorectal Neoplasms diagnosis, Colorectal Neoplasms pathology
- Abstract
Background and Aim: Lack of visual recognition of colorectal polyps may lead to interval cancers. The mechanisms contributing to perceptual variation, particularly for subtle and advanced colorectal neoplasia, have scarcely been investigated. We aimed to evaluate visual recognition errors and provide novel mechanistic insights., Methods: Eleven participants (seven trainees and four medical students) evaluated images from the UCL polyp perception dataset, containing 25 polyps, using eye-tracking equipment. Gaze errors were defined as those where the lesion was not observed according to eye-tracking technology. Cognitive errors occurred when lesions were observed but not recognized as polyps by participants. A video study was also performed including 39 subtle polyps, where polyp recognition performance was compared with a convolutional neural network., Results: Cognitive errors occurred more frequently than gaze errors overall (65.6%), with a significantly higher proportion in trainees (P = 0.0264). In the video validation, the convolutional neural network detected significantly more polyps than trainees and medical students, with per-polyp sensitivities of 79.5%, 30.0%, and 15.4%, respectively., Conclusions: Cognitive errors were the most common reason for visual recognition errors. The impact of interventions such as artificial intelligence, particularly on different types of perceptual errors, needs further investigation including potential effects on learning curves. To facilitate future research, a publicly accessible visual perception colonoscopy polyp database was created., (© 2023 The Authors. Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
25. Computer-aided characterization of early cancer in Barrett's esophagus on i-scan magnification imaging: a multicenter international study.
- Author
-
Hussein M, Lines D, González-Bueno Puyal J, Kader R, Bowman N, Sehgal V, Toth D, Ahmad OF, Everson M, Esteban JM, Bisschops R, Banks M, Haefner M, Mountney P, Stoyanov D, Lovat LB, and Haidry R
- Subjects
- Humans, Esophagoscopy methods, Hyperplasia, Computers, Barrett Esophagus diagnosis, Esophageal Neoplasms diagnostic imaging
- Abstract
Background and Aims: We aimed to develop a computer-aided characterization system that could support the diagnosis of dysplasia in Barrett's esophagus (BE) on magnification endoscopy., Methods: Videos were collected in high-definition magnification white-light and virtual chromoendoscopy with i-scan (Pentax Hoya, Japan) imaging in patients with dysplastic and nondysplastic BE (NDBE) from 4 centers. We trained a neural network with a Resnet101 architecture to classify frames as dysplastic or nondysplastic. The network was tested on 3 different scenarios: high-quality still images, all available video frames, and a selected sequence within each video., Results: Fifty-seven patients, each with videos of magnification areas of BE (34 dysplasia, 23 NDBE), were included. Performance was evaluated by a leave-1-patient-out cross-validation method. In all, 60,174 (39,347 dysplasia, 20,827 NDBE) magnification video frames were used to train the network. The testing set included 49,726 i-scan-3/optical enhancement magnification frames. On 350 high-quality still images, the network achieved a sensitivity of 94%, specificity of 86%, and area under the receiver operator curve (AUROC) of 96%. On all 49,726 available video frames, the network achieved a sensitivity of 92%, specificity of 82%, and AUROC of 95%. On a selected sequence of frames per case (total of 11,471 frames), we used an exponentially weighted moving average of classifications on consecutive frames to characterize dysplasia. The network achieved a sensitivity of 92%, specificity of 84%, and AUROC of 96%. The mean assessment speed per frame was 0.0135 seconds (SD ± 0.006)., Conclusion: Our network can characterize BE dysplasia with high accuracy and speed on high-quality magnification images and sequence of video frames, moving it toward real-time automated diagnosis., (Copyright © 2023 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
26. Spatio-temporal classification for polyp diagnosis.
- Author
-
González-Bueno Puyal J, Brandao P, Ahmad OF, Bhatia KK, Toth D, Kader R, Lovat L, Mountney P, and Stoyanov D
- Abstract
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets., Competing Interests: D.S: Odin Vision Ltd (I, S), D.S: Digital Surgery Ltd (E), L.L: Odin Vision Ltd (I)., (Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.)
- Published
- 2023
- Full Text
- View/download PDF
27. BNT162b2 COVID-19 Vaccination and Its Effect on Blood Pressure.
- Author
-
Tan TL, Salleh SA, Che Man Z, Tan MHP, Kader R, and Jarmin R
- Subjects
- Adult, Humans, Middle Aged, BNT162 Vaccine, Hypertension, Vaccination, Blood Pressure physiology, COVID-19 prevention & control, COVID-19 Vaccines adverse effects
- Abstract
Background and Objectives : The objective of this study is to examine the effect of the BNT162b2 vaccine on systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and pulse pressure (PP) before and 15 min after two doses that were given 21 days apart. Materials and Methods : This active surveillance study of vaccine safety was conducted on 15 and 16 March (for the first dose) and 5 and 6 April (for the second dose) 2021 in an academic hospital. For both doses, SBP, DBP, MAP, and PP levels were measured before and 15 min after both doses were given to healthcare workers over the age of 18. The results of the study were based on measurements of the mean blood pressure (BP), the mean changes in BP, and the BP trends. Results : In total, 287 individuals received the vaccine. After the first dose, 25% ( n = 72) of individuals had a decrease in DBP of at least 10 mmHg (mean DBP decrease: 15 mmHg, 95% CI: 14-17 mmHg), and after the second dose it was 12.5% (mean DBP decrease: 13 mmHg, 95% CI: 12-15 mmHg). After the first dose, 28.6% ( n = 82) had a PP that was wider than 40 mmHg. After the first dose, 5.2% and 4.9% of the individuals experienced an increase or decrease in SBP, respectively, of more than 20 mmHg. After the second dose, the SBP of 11% ( n = 32) decreased by at least 20 mmHg. Conclusions : Improved understanding of vaccine effects on BP may help address vaccine hesitancy in healthcare workers.
- Published
- 2022
- Full Text
- View/download PDF
28. Towards NHS Zero: greener gastroenterology and the impact of virtual clinics on carbon emissions and patient outcomes. A multisite, observational, cross-sectional study.
- Author
-
King J, Poo SX, El-Sayed A, Kabir M, Hiner G, Olabinan O, Colwill M, Ayubi H, Shakweh E, Kronsten VT, Kader R, and Hayee B
- Abstract
Objective: The National Health Service (NHS) produces more carbon emissions than any public sector organisation in England. In 2020, it became the first health service worldwide to commit to becoming carbon net zero, the same year as the COVID-19 pandemic forced healthcare systems globally to rapidly adapt service delivery. As part of this, outpatient appointments became largely remote. Although the environmental benefit of this change may seem intuitive the impact on patient outcomes must remain a priority. Previous studies have evaluated the impact of telemedicine on emission reduction and patient outcomes but never before in the gastroenterology outpatient setting., Method: 2140 appointments from general gastroenterology clinics across 11 Trusts were retrospectively analysed prior to and during the pandemic. 100 consecutive appointments during two periods of time, from 1 June 2019 (prepandemic) to 1 June 2020 (during the pandemic), were used. Patients were telephoned to confirm the mode of transport used to attend their appointment and electronic patient records reviewed to assess did-not-attend (DNA) rates, 90-day admission rates and 90-day mortality rates., Results: Remote consultations greatly reduced the carbon emissions associated with each appointment. Although more patients DNA their remote consultations and doctors more frequently requested follow-up blood tests when reviewing patients face-to-face, there was no significant difference in patient 90-day admissions or mortality when consultations were remote., Conclusion: Teleconsultations can provide patients with a flexible and safe means of being reviewed in outpatient clinics while simultaneously having a major impact on the reduction of carbon emissions created by the NHS., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2022
- Full Text
- View/download PDF
29. Polyp detection on video colonoscopy using a hybrid 2D/3D CNN.
- Author
-
González-Bueno Puyal J, Brandao P, Ahmad OF, Bhatia KK, Toth D, Kader R, Lovat L, Mountney P, and Stoyanov D
- Subjects
- Humans, Neural Networks, Computer, Algorithms, Databases, Factual, Colonoscopy methods, Colonic Polyps diagnostic imaging
- Abstract
Colonoscopy is the gold standard for early diagnosis and pre-emptive treatment of colorectal cancer by detecting and removing colonic polyps. Deep learning approaches to polyp detection have shown potential for enhancing polyp detection rates. However, the majority of these systems are developed and evaluated on static images from colonoscopies, whilst in clinical practice the treatment is performed on a real-time video feed. Non-curated video data remains a challenge, as it contains low-quality frames when compared to still, selected images often obtained from diagnostic records. Nevertheless, it also embeds temporal information that can be exploited to increase predictions stability. A hybrid 2D/3D convolutional neural network architecture for polyp segmentation is presented in this paper. The network is used to improve polyp detection by encompassing spatial and temporal correlation of the predictions while preserving real-time detections. Extensive experiments show that the hybrid method outperforms a 2D baseline. The proposed architecture is validated on videos from 46 patients and on the publicly available SUN polyp database. A higher performance and increased generalisability indicate that real-world clinical implementations of automated polyp detection can benefit from the hybrid algorithm and the inclusion of temporal information., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: D.S, L.B.L and are involved with Odin Vision Ltd. D.S is involved with Digital Surgery Ltd, (Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
30. Role of RpoS in Regulating Stationary Phase Salmonella Typhimurium Pathogenesis-Related Stress Responses under Physiological Low Fluid Shear Force Conditions.
- Author
-
Franco Meléndez K, Crenshaw K, Barrila J, Yang J, Gangaraju S, Davis RR, Forsyth RJ, Ott CM, Kader R, Curtiss R 3rd, Roland K, and Nickerson CA
- Subjects
- Acids metabolism, Bacterial Proteins metabolism, Humans, Virulence genetics, Salmonella typhimurium metabolism, Sigma Factor genetics, Sigma Factor metabolism
- Abstract
The discovery that biomechanical forces regulate microbial virulence was established with the finding that physiological low fluid shear (LFS) forces altered gene expression, stress responses, and virulence of the enteric pathogen Salmonella enterica serovar Typhimurium during the log phase. These log phase LFS-induced phenotypes were independent of the master stress response regulator, RpoS (σ
S ). Given the central importance of RpoS in regulating stationary-phase stress responses of S. Typhimurium cultured under conventional shake flask and static conditions, we examined its role in stationary-phase cultures grown under physiological LFS. We constructed an isogenic rpoS mutant derivative of wild-type S. Typhimurium and compared the ability of these strains to survive in vitro pathogenesis-related stresses that mimic those encountered in the infected host and environment. We also compared the ability of these strains to colonize (adhere, invade, and survive within) human intestinal epithelial cell cultures. Unexpectedly, LFS-induced resistance of stationary-phase S. Typhimurium cultures to acid and bile salts stresses did not rely on RpoS. Likewise, RpoS was dispensable for stationary-phase LFS cultures to adhere to and survive within intestinal epithelial cells. In contrast, the resistance of these cultures to challenges of oxidative and thermal stresses, and their invasion into intestinal epithelial cells was influenced by RpoS. These findings expand our mechanistic understanding of how physiological fluid shear forces modulate stationary-phase S. Typhimurium physiology in unexpected ways and provide clues into microbial mechanobiology and nuances of Salmonella responses to microenvironmental niches in the infected host. IMPORTANCE Bacterial pathogens respond dynamically to a variety of stresses in the infected host, including physical forces of fluid flow (fluid shear) across their surfaces. While pathogens experience wide fluctuations in fluid shear during infection, little is known about how these forces regulate microbial pathogenesis. This is especially important for stationary-phase bacterial growth, which is a critical period to understand microbial resistance, survival, and infection potential, and is regulated in many bacteria by the general stationary-phase stress response protein RpoS. Here, we showed that, unlike conventional culture conditions, several stationary-phase Salmonella pathogenic stress responses were not impacted by RpoS when bacteria were cultured under fluid shear conditions relevant to those encountered in the intestine of the infected host. These findings offer new insight into how physiological fluid shear forces encountered by Salmonella during infection might impact pathogenic responses in unexpected ways that are relevant to their disease-causing ability.- Published
- 2022
- Full Text
- View/download PDF
31. A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks.
- Author
-
Hussein M, González-Bueno Puyal J, Lines D, Sehgal V, Toth D, Ahmad OF, Kader R, Everson M, Lipman G, Fernandez-Sordo JO, Ragunath K, Esteban JM, Bisschops R, Banks M, Haefner M, Mountney P, Stoyanov D, Lovat LB, and Haidry R
- Subjects
- Artificial Intelligence, Biopsy methods, Humans, Neural Networks, Computer, Barrett Esophagus diagnostic imaging, Barrett Esophagus pathology, Esophageal Neoplasms diagnostic imaging, Esophageal Neoplasms pathology
- Abstract
Background and Aims: Seattle protocol biopsies for Barrett's Esophagus (BE) surveillance are labour intensive with low compliance. Dysplasia detection rates vary, leading to missed lesions. This can potentially be offset with computer aided detection. We have developed convolutional neural networks (CNNs) to identify areas of dysplasia and where to target biopsy., Methods: 119 Videos were collected in high-definition white light and optical chromoendoscopy with i-scan (Pentax Hoya, Japan) imaging in patients with dysplastic and non-dysplastic BE (NDBE). We trained an indirectly supervised CNN to classify images as dysplastic/non-dysplastic using whole video annotations to minimise selection bias and maximise accuracy. The CNN was trained using 148,936 video frames (31 dysplastic patients, 31 NDBE, two normal esophagus), validated on 25,161 images from 11 patient videos and tested on 264 iscan-1 images from 28 dysplastic and 16 NDBE patients which included expert delineations. To localise targeted biopsies/delineations, a second directly supervised CNN was generated based on expert delineations of 94 dysplastic images from 30 patients. This was tested on 86 i-scan one images from 28 dysplastic patients., Findings: The indirectly supervised CNN achieved a per image sensitivity in the test set of 91%, specificity 79%, area under receiver operator curve of 93% to detect dysplasia. Per-lesion sensitivity was 100%. Mean assessment speed was 48 frames per second (fps). 97% of targeted biopsy predictions matched expert and histological assessment at 56 fps. The artificial intelligence system performed better than six endoscopists., Interpretation: Our CNNs classify and localise dysplastic Barrett's Esophagus potentially supporting endoscopists during surveillance., (© 2022 The Authors. United European Gastroenterology Journal published by Wiley Periodicals LLC on behalf of United European Gastroenterology.)
- Published
- 2022
- Full Text
- View/download PDF
32. Performance of artificial intelligence for detection of subtle and advanced colorectal neoplasia.
- Author
-
Ahmad OF, González-Bueno Puyal J, Brandao P, Kader R, Abbasi F, Hussein M, Haidry RJ, Toth D, Mountney P, Seward E, Vega R, Stoyanov D, and Lovat LB
- Subjects
- Algorithms, Artificial Intelligence, Colonoscopy, Humans, Colonic Polyps diagnosis, Colonic Polyps pathology, Colorectal Neoplasms diagnosis, Colorectal Neoplasms pathology
- Abstract
Objectives: There is uncertainty regarding the efficacy of artificial intelligence (AI) software to detect advanced subtle neoplasia, particularly flat lesions and sessile serrated lesions (SSLs), due to low prevalence in testing datasets and prospective trials. This has been highlighted as a top research priority for the field., Methods: An AI algorithm was evaluated on four video test datasets containing 173 polyps (35,114 polyp-positive frames and 634,988 polyp-negative frames) specifically enriched with flat lesions and SSLs, including a challenging dataset containing subtle advanced neoplasia. The challenging dataset was also evaluated by eight endoscopists (four independent, four trainees, according to the Joint Advisory Group on gastrointestinal endoscopy [JAG] standards in the UK)., Results: In the first two video datasets, the algorithm achieved per-polyp sensitivities of 100% and 98.9%. Per-frame sensitivities were 84.1% and 85.2%. In the subtle dataset, the algorithm detected a significantly higher number of polyps (P < 0.0001), compared to JAG-independent and trainee endoscopists, achieving per-polyp sensitivities of 79.5%, 37.2% and 11.5%, respectively. Furthermore, when considering subtle polyps detected by both the algorithm and at least one endoscopist, the AI detected polyps significantly faster on average., Conclusions: The AI based algorithm achieved high per-polyp sensitivities for advanced colorectal neoplasia, including flat lesions and SSLs, outperforming both JAG independent and trainees on a very challenging dataset containing subtle lesions that could have been overlooked easily and contribute to interval colorectal cancer. Further prospective trials should evaluate AI to detect subtle advanced neoplasia in higher risk populations for colorectal cancer., (© 2021 The Authors. Digestive Endoscopy published by John Wiley & Sons Australia, Ltd on behalf of Japan Gastroenterological Endoscopy Society.)
- Published
- 2022
- Full Text
- View/download PDF
33. Unlocking the benefits of the Baveno VI guidance when screening for varices: an audit of clinical practice across London.
- Author
-
Colwill M, Lake L, El-Sayed A, King J, Kader R, Shakweh E, Caracostea A, China L, and Maurice J
- Abstract
Background: The Baveno VI consensus identifies patients with compensated advanced chronic liver disease (cACLD) who can safely avoid screening endoscopy. However, concordance in clinical practice with this guidance is unknown. We audited clinical practice and the provision of transient elastography (TE) aiming to identify potential cost savings and benefits., Methods: Retrospective data collection from 12 sites across London over 6 months by reviewing oesophagogastroduodenoscopy (OGD) reports, platelet count and TE results as well as information on site-specific provision of TE., Results: Three-hundred and fifty-one screening procedures were identified; 177 (50.43%) had a TE test performed within the preceding 12 months; 142 (80.23%) patients with a recent TE test did not meet criteria for screening OGD. TE provision varied widely between sites., Conclusion: Improving concordance with the Baveno criteria through improved provision of TE would have benefits for patients, healthcare systems and the environment and would help to address the challenges of moving on from the COVID-19 pandemic., (© Royal College of Physicians 2022. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.