19 results on '"Itri R"'
Search Results
2. Deuterated polyunsaturated fatty acids inhibit photoirradiation-induced lipid peroxidation in lipid bilayers
- Author
-
Firsov, A.M., Franco, M.S.F., Chistyakov, D.V., Goriainov, S.V., Sergeeva, M.G., Kotova, E.A., Fomich, M.A., Bekish, A.V., Sharko, O.L., Shmanai, V.V., Itri, R., Baptista, M.S., Antonenko, Y.N., and Shchepinov, M.S.
- Published
- 2022
- Full Text
- View/download PDF
3. Methylene Blue Location in (Hydroperoxized) Cardiolipin Monolayer: Implication in Membrane Photodegradation
- Author
-
de Souza, R. M., Siani, P., Schmidt, T. F., Itri, R., and Dias, L. G.
- Abstract
We present molecular dynamics simulations of cardiolipin (CL) and CL monohydroperoxized derivative (CLOOH) monolayers to investigate the initial steps of phospholipid oxidation induced by methylene blue (MB) photoexcitation under continuous illumination. We considered different MB atomic charge distributions to simulate the MB electronic distribution in the singlet ground and triplet excited states. Simulation results allied to experimental data revealed that initial CL photooxidation probably occurs via a type II mechanism, to produce lipid hydroperoxide by singlet oxygen attack to the alkyl chain unsaturations. The resulting hydroperoxide group prefers to reside near the aqueous interface, to increase the membrane surface area and to decrease lipid packing. Interestingly, MB orientation changes from nearly parallel to the water–monolayer interface in the ground state to normal to the interface in its triplet excited state. The latter orientation favors oxidative chain reaction continuity via a type I mechanism, during which the hydrogen atom must be transferred from the hydroperoxide group to triplet MB. Taken together, the present results can be extrapolated to improve our understanding of how oxidation progresses in lipidic biomembrane, which will lead to the formation of oxidized species with shortened chains and will cause severe photodamage to self-organized systems.
- Published
- 2024
- Full Text
- View/download PDF
4. Kapok fibers modified with cationic surfactants: Structural insights and efficient removal of Cr(VI) and bisphenol A.
- Author
-
Nunes MABS, Vilas Boas ACD, Fernandes R, Itri R, Marques LR, Ando RA, and Petri DFS
- Abstract
In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10
-3 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.6 nm and 2.8 nm, respectively, suggesting the presence of hemimicelles on the surface. KF/CTAB and KF/CPC were used as adsorbents in batch and column adsorption experiments to remove Cr(VI) ions, Bisphenol A (BPA), and their binary mixtures from synthetic solution and fresh water. The adsorbed amounts of Cr(VI) ions on KF/CTAB and KF/CPC, as determined from batch experiments, were 48.62 mg/g and 34.17 mg/g, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that Cr(VI) adsorption on KF/CTAB involved bromide displacement, while chloride remained on KF/CPC. Moreover, Cr(VI) ions were reduced to Cr(III) ions due to a possible oxidation of γ-sitosterol, one component of the KF wax. Density Functional Theory (DFT) calculations indicated that the interaction energy of CTAB- Cr(VI) pair (-167.8 kcal/mol) is more favorable than that of the CPC-Cr(VI) pair (-147.8 kcal/mol). The adsorbed amounts of BPA on KF/CTAB and KF/CPC were 41.66 mg/g and 22.62 mg/g, respectively. XPS analysis indicated the appearance of an OH peak at 533 eV after the adsorption of BPA, aligning with DFT calculations that predicted interactions between the counter-ions (Br or Cl) and BPA hydroxy groups. In column adsorption experiments, Cr(VI) ions were more effectively adsorbed onto KF/CTAB in the presence of BPA, demonstrating the potential of KF/CTAB for the simultaneous remediation of mixed contaminants in water treatment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
5. Hybrid crystalline bioparticles with nanochannels encapsulating acemannan from Aloe vera: Structure and interaction with lipid membranes.
- Author
-
Madrid RRM, Mathews PD, Pramanik S, Mangiarotti A, Fernandes R, Itri R, Dimova R, and Mertins O
- Subjects
- Hydrogen-Ion Concentration, Particle Size, Surface Properties, Membrane Lipids chemistry, Nanostructures chemistry, Aloe chemistry, Mannans chemistry
- Abstract
Smart nanocarrier-based bioactive delivery systems are a current focus in nanomedicine for allowing and boosting diverse disease treatments. In this context, the design of hybrid lipid-polymer particles can provide structure-sensitive features for tailored, triggered, and stimuli-responsive devices. In this work, we introduce hybrid cubosomes that have been surface-modified with a complex of chitosan-N-arginine and alginate, making them pH-responsive. We achieved high-efficiency encapsulation of acemannan, a bioactive polysaccharide from Aloe vera, within the nanochannels of the bioparticle crystalline structure and demonstrated its controlled release under pH conditions mimicking the gastric and intestinal environments. Furthermore, an acemannan-induced phase transition from Im3m cubic symmetry to inverse hexagonal H
II phase enhances the bioactive delivery by compressing the lattice spacing of the cubosome water nanochannels, facilitating the expulsion of the encapsulated solution. We also explored the bioparticle interaction with membranes of varying curvatures, revealing thermodynamically driven affinity towards high-curvature lipid membranes and inducing morphological transformations in giant unilamellar vesicles. These findings underscore the potential of these structure-responsive, membrane-active smart bioparticles for applications such as pH-triggered drug delivery platforms for the gastrointestinal tract, and as modulators and promoters of cellular internalization., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Inc.)- Published
- 2024
- Full Text
- View/download PDF
6. Self-assembling properties of mono and di-rhamnolipids characterized using small-angle X-ray scattering.
- Author
-
Motta AM, Mariani P, Itri R, and Spinozzi F
- Subjects
- Surface-Active Agents chemistry, Monte Carlo Method, Hydrophobic and Hydrophilic Interactions, Micelles, Glycolipids chemistry, Scattering, Small Angle, X-Ray Diffraction
- Abstract
Rhamnolipids are glycolipid surfactants composed by a hydrophilic head of either one (mono-RL) or two (di-RL) rhamnose moieties coupled to hydroxyaliphatic chains that can be of different lengths. In spite of their importance in different fields of applications, as bioremediation processes for instance, self-aggregation physico-chemical properties of RLs are not unique. This because a variety of aggregates morphologies (shape and size) can either exist or coexist in aqueous dispersion due to mono-RL:di-RL molar ratio, hydrophobic tails length, pH and the presence of co-surfactants and additives. Recently, a theorethical approach reported the self-assembling morphologies of either pure mono or di-RL in aqueous environment, predicting the formation of spherical to ellipsoidal micelles to worm-like and disk-like aggregates depending on RL concentration and fatty acid chain length. In order to add new information to those previously available, the present work investigated the self-assembling properties of mono-RL-C10-C10 and di-RL-C10-C10 separately in aqueous dispersion by small angle X-Ray scattering (SAXS). A novel approach was applied to the data analysis coupling the scattering length density profiles of the RLs chemical groups and Monte Carlo simulations. Such an approach allowed us to infer about the preferred mono-RL and di-RL conformations that fit better in the self-assembling morphologies. In this way, we show that mono-RL-C10-C10 self-assembles into lamella-like aggregates coexisting with 30 % of multi-lamella aggregates (circa of 5 closed stacked lamella) from a concentration ranging from 10 to 50 mM, with hydrophobic thickness of about 12 Å, a hydrated polar head thickness of 10 Å, and an area per glycolipid of 76 Å
2 . On the other hand, di-RL prefers to self-associate into flexible cylinder-like aggregates, from 70 mM to 110 mM concentration, with hydrophobic radius on the order of 7.5 Å, a hydrated polar shell of 21.5 Å, with hydropobic/polar interface of 110 Å2 per glycolipid. Interestingly, the parameters obtained from the best fitting to the experimental data associated to the volume fraction distribution of the chemical groups within the aggregates revealed that the hydrophobic chains are more disordered in mono-RL planar aggregates than in di-RL worm-like aggregates, as well as the hydration properties. Further, the addition of 100 mM NaCl in di-RL aqueous dispersion leads to the formation of longer worm-like aggregates. Taking together, this work opens a new avenue regarding characterization of biosurfactants self-assembling properties by using SAXS, also contributing to prepare more efficient biosurfactant dispersions depending on the desired applications in industrial sectors and bioremediation., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
7. LAFeBS, alive, kicking, and growing: the story continues….
- Author
-
Peluffo RD, Del V Alonso S, Itri R, Flecha FLG, and Barbosa L
- Abstract
This Commentary describes a call for contributions to an upcoming Special Issue (SI) of Biophysical Reviews on the Latin American Federation of Biophysical Societies (LAFeBS). It details the reason for the SI, the SI Editors' contact information, and the relevant submission details for those wishing to contribute a review manuscript., Competing Interests: Competing interestsThe authors declare no competing interests., (© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2024.)
- Published
- 2024
- Full Text
- View/download PDF
8. Photobiomodulation of Na,K-ATPase in native membrane fraction and reconstituted in DPPC:DPPE-liposome.
- Author
-
Scanavachi G, Yoneda JS, Sebinelli HG, Barbosa LRS, Ciancaglini P, and Itri R
- Abstract
Studies focusing on how photobiomodulation (PBM) can affect the structure and function of proteins are scarce in the literature. Few previous studies have shown that the enzymatic activity of Na,K-ATPAse (NKA) can be photo-modulated. However, the variability of sample preparation and light irradiation wavelengths have not allowed for an unequivocal conclusion about the PBM of NKA. Here, we investigate minimal membrane models containing NKA, namely, native membrane fraction and DPPC:DPPE proteoliposome upon laser irradiation at wavelengths 532, 650, and 780 nm. Interestingly, we show that the PBM on the NKA enzymatic activity has a bell-shaped profile with a stimulation peak (~15% increase) at around 20 J.cm
-2 and 6 J.cm-2 for the membrane-bound and the proteoliposome samples, respectively, and are practically wavelength independent. Further, by normalizing the enzymatic activity by the NKA enzyme concentration, we show that the PBM response is related to the protein amount with small influence due to protein's environment. The stimulation decays over time reaching the basal level around 6 h after the irradiation for the three lasers and both NKA samples. Our results demonstrate the potential of using low-level laser therapy to modulate NKA activity, which may have therapeutic implications and benefits., (© 2024 American Society for Photobiology.)- Published
- 2024
- Full Text
- View/download PDF
9. Unveiling Sticholysin II and plasmid DNA interaction: Implications for developing non-viral vectors.
- Author
-
Escalona-Rodriguez FA, Cruz-Leal Y, La O-Bonet J, Pérez-Erviti JA, Valdés-Tresanco ME, Rivero-Hernández AL, Sifontes-Niebla M, Manso-Vargas A, Sánchez B, Alvarez C, Barbosa LRS, Itri R, and Lanio ME
- Subjects
- DNA, Plasmids, Cnidarian Venoms chemistry
- Abstract
Non-viral gene delivery systems offer significant potential for gene therapy due to their versatility, safety, and cost advantages over viral vectors. However, their effectiveness can be hindered by the challenge of efficiently releasing the genetic cargo from endosomes to prevent degradation in lysosomes. To overcome this obstacle, functional components can be incorporated into these systems. Sticholysin II (StII) is one of the pore-forming proteins derived from the sea anemone Stichodactyla helianthus, known for its high ability to permeabilize cellular and model membranes. In this study, we aimed to investigate the interaction between StII, and a model plasmid (pDNA) as an initial step towards designing an improved vector with enhanced endosomal escape capability. The electrophoretic mobility shift assay (EMSA) confirmed the formation of complexes between StII and pDNA. Computational predictions identified specific residues involved in the StII-DNA interaction interface, highlighting the importance of electrostatic interactions and hydrogen bonds in mediating the binding. Atomic force microscopy (AFM) of StII-pDNA complexes revealed the presence of nodular fiber and toroid shapes. These complexes were found to have a predominantly micrometer size, as confirmed by dynamic light scattering (DLS) measurements. Despite increase in the overall charge, the complexes formed at the evaluated nitrogen-to-phosphorus (N/P) ratios still maintained a negative charge. Moreover, StII retained its pore-forming capacity regardless of its binding to the complexes. These findings suggest that the potential ability of StII to permeabilize endosomal membranes could be largely maintained when combined with nucleic acid delivery systems. Additionally, the still remaining negative charge of the complexes would enable the association of another positively charged component to compact pDNA. However, to minimize non-specific cytotoxic effects, it is advisable to explore methods to regulate the protein's activity in response to the microenvironment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
10. Flavonoid-Labeled Biopolymer in the Structure of Lipid Membranes to Improve the Applicability of Antioxidant Nanovesicles.
- Author
-
Mathews PD, Gama GS, Megiati HM, Madrid RRM, Garcia BBM, Han SW, Itri R, and Mertins O
- Abstract
Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their applicability strongly depends on the safety and low immunogenicity of the components. Despite this, the use of unsaturated lipids in nanovesicles, which degrade following oxidation processes during storage and especially during the proper routes of administration in the human body, may yield toxic degradation products. In this study, we used a biopolymer (chitosan) labeled with flavonoid (catechin) as a component over a lipid bilayer for micro- and nanovesicles and characterized the structure of these vesicles in oxidation media. The purpose of this was to evaluate the in situ effect of the antioxidant in three different vesicular systems of medium, low and high membrane curvature. Liposomes and giant vesicles were produced with the phospholipids DOPC and POPC, and crystalline cubic phase with monoolein/DOPC. Concentrations of chitosan-catechin (CHCa) were included in all the vesicles and they were challenged in oxidant media. The cytotoxicity analysis using the MTT assay (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) revealed that concentrations of CHCa below 6.67 µM are non-toxic to HeLa cells. The size and zeta potential of the liposomes evidenced the degradation of their structures, which was minimized by CHCa. Similarly, the membrane of the giant vesicle, which rapidly deteriorated in oxidative solution, was protected in the presence of CHCa. The production of a lipid/CHCa composite cubic phase revealed a specific cubic topology in small-angle X-ray scattering, which was preserved in strong oxidative media. This study demonstrates the specific physicochemical characteristics introduced in the vesicular systems related to the antioxidant CHCa biopolymer, representing a platform for the improvement of composite nanovesicle applicability.
- Published
- 2024
- Full Text
- View/download PDF
11. Rheological and mechanical properties of hydroxypropyl methylcellulose-based hydrogels and cryogels controlled by AOT and SDS micelles.
- Author
-
Furtado LM, Yee M, Fernandes R, Valera TS, Itri R, and Petri DFS
- Abstract
Hypothesis: The type and concentration of surfactants affect the rheological behavior of hydroxypropyl methylcellulose (HPMC) chains in hydrogels, influencing the microstructure and mechanical properties of HPMC cryogels., Experiments: Hydrogels and cryogels containing HPMC, AOT (bis (2-ethylhexyl) sodium sulfosuccinate or dioctyl sulfosuccinate salt sodium, two C8 chains and sulfosuccinate head group), SDS (sodium dodecyl sulfate, one C12 chain and sulfate head group), and sodium sulfate (salt, no hydrophobic chain) at different concentrations were investigated using small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), rheological measurements, and compressive tests., Findings: SDS micelles bound to the HPMC chains building "bead necklaces", increasing considerably the storage modulus G' values of the hydrogels and the compressive modulus E values of the corresponding cryogels. The dangling SDS micelles promoted multiple junction points among the HPMC chains. AOT micelles and HPMC chains did not form "bead necklaces". Although AOT increased the G' values of the hydrogels, the resulting cryogels were softer than pure HPMC cryogels. The AOT micelles are probably embedded between HPMC chains. The AOT short double chains rendered softness and low friction to the cryogel cell walls. Therefore, this work demonstrated that the structure of the surfactant tail can tune the rheological behavior of HPMC hydrogels and hence the microstructure of the resulting cryogels., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
12. Self-oriented anisotropic structure of G-hydrogels as a delicate balance between attractive and repulsive forces.
- Author
-
Pepe A, Moretti P, Yoneda JS, Carducci F, Itri R, and Mariani P
- Abstract
Guanine (G) hydrogels are very attractive materials made by the supramolecular organization of G-derivatives in water. In this paper, hydrogels composed of guanosine 5'-monophosphate (GMP) and guanosine (Gua), that make long, flexible and knotted G-quadruplexes, were investigated by small- and wide-angle X-ray scattering (SAXS and WAXS) to comprehend the origin of their unique orientational properties. The SAXS intensity, analysed at a fixed scattering vector modulus Q as a function of polar angle, allowed us to derive the Maier-Saupe orientation parameter m . The strong dependence of m on hydrogel composition and temperature demonstrated that the preferred orientation is controlled by the quadruplex surface charge and flexibility. Indeed, a possible correlation between the orientation parameter m and the quadruplex-to-quadruplex lateral interactions was explored. Results confirmed that the balance between attractive and repulsive interactions plays a main role in the orientational anisotropy: quadruplex clusters lose their orientational properties when attractive interactions decrease. The key role of the number of negative charges per unit length of the G-quadruplex filaments was confirmed by Atomic Force Microscopy (AFM) observations. Indeed, directionality histograms showed that in the presence of a large amount of Gua, G-quadruplexes follow preferential orientations other than those related to the strong interactions with the K
+ pattern on the mica surface. The fact that lateral quadruplex-to-quadruplex interactions, even in the presence of external (opposing) forces, can tune the hydrogel alignment in a given preferred direction provides novel possibilities for scaffold/3D printing applications.- Published
- 2023
- Full Text
- View/download PDF
13. Unveiling protein-protein interaction potential through Monte Carlo simulation combined with small-angle X-ray scattering.
- Author
-
Tanouye FT, Alves JR, Spinozzi F, and Itri R
- Subjects
- Scattering, Small Angle, X-Ray Diffraction, Monte Carlo Method, X-Rays, Muramidase, Proteins
- Abstract
Protein interactions are investigated under different conditions of lysozyme concentration, temperature and ionic strength by means of in-solution small angle X-Ray scattering (SAXS) experiments and Monte Carlo (MC) simulations. Initially, experimental data were analysed through a Hard-Sphere Double Yukawa (HSDY) model combined with Random Phase Approximation (RPA), a closure relationship commonly used in the literature for monodisperse systems. We realized by means of MC that the HSDY/RPA modelling fails to describe the protein-protein pair potential for moderated and dense systems at low ionic strength, mainly due to inherent distortions of the RPA approximation. Our SAXS/MC results thus show that lysozyme concentrations between 2 (diluted) and 20 mg/mL (not crowded) present similar protein-protein pair potential preserving the values of surface net charge around 7 e, protein diameter of 28 Å, decay range of attractive well potential of 3 Å and a depth of the well potential varying from 1 to 5 k
B T depending on temperature and salt addition. Noteworthy, we here propose a novel method to analyse the SAXS data from interacting proteins through MC simulations, which overcomes the deficiencies presented by the use of a closure relationship. Furthermore, this new methodology of combining SAXS with MC simulations gives a step forward to investigate more complex systems as those composed of a mixture of proteins of distinct species presenting different molecular weights (and hence sizes) and surface net charges at low, moderate and very dense systems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
14. Biophysical Reviews (ISSUE 4 2023): LAFeBS-highlighting biophysics in Latin America.
- Author
-
Peluffo RD, Del V Alonso S, Itri R, Flecha FLG, and Barbosa L
- Abstract
Competing Interests: Competing interestsThe authors declare no competing interests.
- Published
- 2023
- Full Text
- View/download PDF
15. The Latin American Federation of Biophysical Societies (LAFeBS).
- Author
-
Alonso SDV, Itri R, Barbosa LRS, Peluffo RD, and González Flecha FL
- Abstract
The Latin American Federation of Biophysical Societies (LAFeBS) was constituted in 2007 in Montevideo, Uruguay, as a collaborative effort among the Biophysical Societies of Argentina, Brazil, and Uruguay. This visionary collaboration foresees the future of Biophysics in Latin America. In this commentary, we will briefly review the history of LAFeBS, the remarkable path undertaken since its foundation 16 years ago, and its key initiative, the Latin American Postgraduate Program in Biophysics (POSLATAM)., Competing Interests: Competing interestsThe authors declare no competing interests., (© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2023.)
- Published
- 2023
- Full Text
- View/download PDF
16. Small-angle scattering from flat bilayers containing correlated scattering length density inhomogeneities.
- Author
-
Spinozzi F, Barbosa LRS, Corucci G, Mariani P, and Itri R
- Abstract
Model lipid bilayers have been widely employed as a minimal system to investigate the structural properties of biological membranes by small-angle X-ray (SAXS) and neutron scattering (SANS) techniques. These have nanometre resolution and can give information regarding membrane thickness and scattering length densities (SLDs) of polar and apolar regions. However, biological membranes are complex systems containing different lipids and protein species, in which lipid domains can be dynamically assembled and disassembled. Therefore, SLD variations can occur within the biomembrane. In this work, a novel method has been developed to simulate SAXS and SANS profiles obtained from large unilamellar vesicles containing SLD inhomogeneities that are spatially correlated over the membrane surface. Such inhomogeneities are represented by cylindrical entities with equivalent SLDs. Stacking of bilayers is also included in the model, with no correlation between horizontal and vertical order. The model is applied to a lipid bilayer containing SLD inhomogeneities representing pores, lipid domains, and transmembrane, partially immersed and anchored proteins. It is demonstrated that all the structural information from the host lipid bilayer and from the SLD inhomogeneity can be consistently retrieved by a combined analysis of experimental SAXS and SANS data through the methodology proposed here., (© Francesco Spinozzi et al. 2023.)
- Published
- 2023
- Full Text
- View/download PDF
17. Dynamic photodamage of red blood cell induced by CisDiMPyP porphyrin.
- Author
-
Scanavachi G, Kinoshita K, Tsubone TM, and Itri R
- Subjects
- Humans, Erythrocytes metabolism, Erythrocyte Membrane metabolism, Oxidative Stress, Hemolysis, Singlet Oxygen metabolism
- Abstract
It is well-known that oxidative damage in red blood cell (RBC) usually causes morphological changes and increased membrane rigidity. Although many studies have focused on investigating how RBC responds to a photodynamic stimulus, the intermediate steps between membrane damage and hemolysis are not reported. To give a comprehensive insight into changes of RBC membrane property under different oxidative damage levels, we employed the photoactivation of CisDiMPyP porphyrin that primarily generates singlet oxygen
1 O2 as oxidant species. We found that there were distinguishable characteristic damages depending on the1 O2 flux over the membrane, in a way that each impact of photooxidative damage was categorized under three damage levels: mild (maintaining the membrane morphology and elasticity), moderate (membrane elongation and increased membrane elasticity) and severe (wrinkle-like deformation and hemolysis). When sodium azide (NaN3 ) was used as a singlet oxygen quencher, delayed cell membrane alterations and hemolysis were detected. The delay times showed that1 O2 indeed plays a key role that causes RBC photooxidation by CisDiMPyP. We suggest that the sequence of morphological changes (RBC discoid area expansion, wrinkle-like patterns, and hemolysis) under photooxidative damage occurs due to damage to the lipid membrane and cytoskeletal network proteins., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
18. Unveiling the mono-rhamnolipid and di-rhamnolipid mechanisms of action upon plasma membrane models.
- Author
-
Marega Motta A, Donato M, Mobbili G, Mariani P, Itri R, and Spinozzi F
- Subjects
- Cell Membrane, Decanoates, Glycolipids, Lipid Bilayers, Phosphatidylcholines, Rhamnose analogs & derivatives, Sphingomyelins, Unilamellar Liposomes
- Abstract
Rhamnolipids (RLs) are biosurfactants with significant tensioactive and emulsifying properties. They are mainly composed by mono-RL and di-RL components. Although there are numerous studies concerning their molecular properties, information is scarce regarding the mechanisms by which each of the two components interacts with cell membranes. Herein, we performed phase-contrast and fluorescence microscopy experiments on plasma membrane models represented by giant-unilamellar-vesicles (GUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 2-[[(E,2S,3R)-1,3-dihydroxy-2-(octadecanoylamino) octadec-4-enyl]peroxy-hydroxyphosphoryl]oxyethyl-trimethylazanium (sphingomyelin, SM) and (3β)-cholest-5-en-3-ol (cholesterol, CHOL) (1:1:1 M ratio), which present liquid-order (L
o ) liquid-disorder (Ld ) phase coexistence, in the presence of either mono-RL or di-RL in 0.06-0.25 mM concentration range. A new method has been developed to determine area and volume of GUVs with asymmetrical shape and a kinetic model describing GUV-RL interaction in terms of two mechanisms, RL-insertion and pore formation, has been worked out. Results show that the insertion of mono-RL in the membrane outer leaflet is the dominant process with no pore formation and a negligible effect in modifying membrane permeability, but induces lipid mixing. Conversely, the di-RL-GUV interaction begins with the insertion mechanism and, as the time passes by, the pore formation process occurs. The analyses of di-RL show that the whole process is only relevant in the Ld phase with a higher extent to 0.25 mM than to 0.06 mM., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Inc. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
19. Biophysical Reviews special issue call: LAFeBS-highlighting biophysics in Latin America.
- Author
-
Peluffo RD, Del V Alonso S, Itri R, Flecha FLG, and Barbosa LRS
- Abstract
This Commentary describes a call for contributions to an upcoming Special Issue (SI) of Biophysical Reviews on the Latin American Federation of Biophysical Societies (LAFeBS). It details the reason for the SI, the SI Editors contact information and the relevant submission details for those wishing to contribute., Competing Interests: Conflict of interestThe authors declare no competing interests., (© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2022.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.