20 results on '"Huq MS"'
Search Results
2. Assessing Radiology and Radiation Therapy Needs for Cancer Care in Low-and-Middle-Income Countries: Insight From a Global Survey of Departmental and Institutional Leaders.
- Author
-
Parker SA, Weygand J, Bernat BG, Jackson AM, Mawlawi O, Barreto I, Hao Y, Khan R, Yorke AA, Swanson W, Huq MS, Lief E, Biancia CD, Njeh CF, Al-Basheer A, Chau OW, Avery S, Ngwa W, and Sandwall PA
- Abstract
Purpose: The global cancer burden and mortality rates are increasing, with significant disparities in access to care in low- and middle-income countries (LMICs). This study aimed to identify radiology and radiation therapy needs in LMICs from the perspective of departmental and institutional leaders., Methods and Materials: A survey was developed and conducted by the American Association of Physicists in Medicine Global Needs Assessment Committee and the American Association of Physicists in Medicine International Council. The survey, organized into 5 sections (Introduction, Infrastructure Needs, Education Needs, Research Needs, and General Information), was open to respondents from March 1, to August 16, 2022., Results: A total of 175 responses were received from 6 global regions: Africa (31.4%), the Americas (17.7%), the Eastern Mediterranean (14.3%), Europe (9.1%), Southeast Asia (23.4%), and the Western Pacific (4.0%). The greatest reported need was for new or updated equipment, particularly positron emission tomography/computed tomography imaging technology. There was also a high demand for clinical and equipment training. Approximately 25% of institutions reported a lack of radiology-based cancer screening programs because of high health care costs and a shortage of specialized equipment. Many institutions that expressed interest in research face funding and grant challenges., Conclusions: The findings highlight critical areas where organizations can support LMICs in enhancing radiology and radiation therapy services to mitigate the growing cancer burden., (© 2024 The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Evaluating intra-fractional tumor motion in lung stereotactic radiotherapy with deep inspiration breath-hold.
- Author
-
Fu W, Zhang Y, Mehta K, Chen A, Musunuru HB, Pucci P, Kubis J, and Huq MS
- Subjects
- Humans, Male, Aged, Female, Middle Aged, Organs at Risk radiation effects, Movement, Aged, 80 and over, Dose Fractionation, Radiation, Prognosis, Inhalation, Lung Neoplasms radiotherapy, Lung Neoplasms surgery, Lung Neoplasms diagnostic imaging, Lung Neoplasms pathology, Breath Holding, Radiotherapy Planning, Computer-Assisted methods, Radiosurgery methods, Cone-Beam Computed Tomography methods, Radiotherapy, Intensity-Modulated methods, Radiotherapy Dosage
- Abstract
Purpose: To evaluate the intra-fractional tumor motion in lung stereotactic body radiotherapy (SBRT) with deep inspiration breath-hold (DIBH), and to investigate the adequacy of the current planning target volume (PTV) margins., Methods: Twenty-eight lung SBRT patients with DIBH were selected in this study. Among the lesions, twenty-three were at right or left lower lobe, two at right middle lobe, and three at right or left upper lobe. Post-treatment gated cone-beam computed tomography (CBCT) was acquired to quantify the intra-fractional tumor shift at each treatment. These obtained shifts were then used to calculate the required PTV margin, which was compared with the current applied margin of 5 mm margin in anterior-posterior (AP) and right-left (RL) directions and 8 mm in superior-inferior (SI) direction. The beam delivery time was prolonged with DIBH. The actual beam delivery time with DIBH (T
beam_DIBH ) was compared with the beam delivery time without DIBH (Tbeam_wo_DIBH ) for the corresponding SBRT plan., Results: A total of 113 treatments were analyzed. At six treatments (5.3%), the shifts exceeded the tolerance defined by the current PTV margin. The average shifts were 0.0 ± 1.9 mm, 0.1±1.5 mm, and -0.5 ± 3.7 mm in AP, RL, and SI directions, respectively. The required PTV margins were determined to be 4.5, 3.9, and 7.4 mm in AP, RL, and SI directions, respectively. The average Tbeam_wo_DIBH and Tbeam_DIBH were 2.4 ± 0.4 min and 3.6 ± 1.5 min, respectively. The average treatment slot for lung SBRT with DIBH was 25.3 ± 7.9 min., Conclusion: Intra-fractional tumor motion is the predominant source of treatment uncertainties in CBCT-guided lung SBRT with DIBH. The required PTV margin should be determined based on data specific to each institute, considering different techniques and populations. Our data indicate that our current applied PTV margin is adequate, and it is possible to reduce further in the RL direction. The time increase of Tbeam_DIBH , relative to the treatment slot, is not clinically significant., (© 2024 The Author(s). Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.)- Published
- 2024
- Full Text
- View/download PDF
4. Minimizing normal tissue low dose bath for left breast Volumetric Modulated Arc Therapy (VMAT) using jaw offset.
- Author
-
Zhang Y, Fu W, Brandner E, Percinsky S, Moran M, and Huq MS
- Subjects
- Humans, Female, Retrospective Studies, Breast Neoplasms radiotherapy, Unilateral Breast Neoplasms radiotherapy, Tomography, X-Ray Computed methods, Heart radiation effects, Radiotherapy, Intensity-Modulated methods, Radiotherapy Planning, Computer-Assisted methods, Radiotherapy Dosage, Organs at Risk radiation effects
- Abstract
Purpose: With proper beam setup and optimization constraints in the treatment planning system, volumetric modulated arc therapy (VMAT) can improve target dose coverage and conformity while reducing doses to adjacent structures for whole breast radiation therapy. However, the low-dose bath effect on critical structures, especially the heart and the ipsilateral lung, remains a concern. In this study, we present a VMAT technique with the jaw offset VMAT (JO-VMAT) to reduce the leakage and scatter doses to critical structures for whole breast radiation therapy., Materials and Methods: The data of 10 left breast cancer patients were retrospectively used for this study. CT images were acquired on a CT scanner (GE, Discovery) with the deep-inspiration breath hold (DIBH) technique. The planning target volumes (PTVs) and the normal structures (the lungs, the heart, and the contralateral breast) were contoured on the DIBH scan. A 3D field-in-field plan (3D-FiF), a tangential VMAT (tVMAT) plan, and a JO-VMAT plan were created with the Eclipse treatment planning system. An arc treatment field with the x-jaw closed across the central axis creates a donut-shaped high-dose distribution and a cylinder-shaped low-dose volume along the central axis of gantry rotation. Applying this setup with proper multi-leaf collimator (MLC) modulation, the optimized plan potentially can provide sufficient target coverage and reduce unnecessary irradiation to critical structures. The JO-VMAT plans involve 5-6 tangential arcs (3 clockwise arcs and 2-3 counterclockwise arcs) with jaw offsets. The plans were optimized with objective functions specified to achieve PTV dose coverage and homogeneity; For organs at risk (OARs), objective functions were specified individually for each patient to accomplish the best achievable treatment plan. For tVMAT plans, optimization constraints were kept the same except that the jaw offset was removed from the initial beam setup. The dose volume histogram (DVH) parameters were generated for dosimetric evaluation of PTV and OARs., Results: The D
95% to the PTV was greater than the prescription dose of 42.56 Gy for all the plans. With both VMAT techniques, the PTV conformity index (CI) was statistically improved from 0.62 (3D-FiF) to 0.83 for tVMAT and 0.84 for JO-VMAT plans. The difference in the homogeneity index (HI) was not significant. The Dmax to the heart was reduced from 12.15 Gy for 3D-FiF to 8.26 Gy for tVMAT and 7.20 Gy for JO-VMAT plans. However, a low-dose bath effect was observed with tVMAT plans to all the critical structures including the lungs, the heart, and the contralateral breast. With JO-VMAT, the V5Gy and V2Gy of the heart were reduced by 32.7% and 15.4% compared to 3D-FiF plans. Significantly, the ipsilateral lung showed a reduction in mean dose (4.65-3.44 Gy) and low dose parameters (23.4% reduction for V5Gy and 10.7% reduction for V2Gy ) for JO-VMAT plans compared to the 3D-FiF plans. The V2Gy dose to the contralateral lung and breast was minimal with JO-VMAT techniques., Conclusion: A JO-VMAT technique was evaluated in this study and compared with 3D-FiF and tVMAT techniques. Our results showed that the JO-VMAT technique can achieve clinically comparable coverage and homogeneity and significantly improve dose conformity within PTV. Additionally, JO-VMAT eliminated the low-dose bath effect at all OARs evaluation metrics including the ipsilateral/contralateral lung, the heart, and the contralateral breast compared to 3D-FiF and tVMAT. This technique is feasible for the whole breast radiation therapy of left breast cancers., (© 2024 The Author(s). Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.)- Published
- 2024
- Full Text
- View/download PDF
5. JP4-039, a Mitochondria-Targeted Nitroxide, Mitigates the Effect of Apoptosis and Inflammatory Cell Migration in the Irradiated Mouse Retina.
- Author
-
Adeghate JO, Epperly MW, Davoli KA, Lathrop KL, Wipf P, Hou W, Fisher R, Thermozier S, Huq MS, Sahel JA, Greenberger JS, and Eller AW
- Subjects
- Animals, Mice, Mice, Inbred C57BL, Male, Nitrogen Oxides pharmacology, Inflammation pathology, Apoptosis drug effects, Apoptosis radiation effects, Retina drug effects, Retina metabolism, Retina radiation effects, Retina pathology, Mitochondria metabolism, Mitochondria drug effects, Mitochondria radiation effects, Cell Movement drug effects, Cell Movement radiation effects
- Abstract
We hypothesize that the injection of JP4-039, a mitochondria-targeted nitroxide, prior to irradiation of the mouse retina may decrease apoptosis and reduce neutrophil and macrophage migration into the retina. In our study, we aimed to examine the effects of JP4-039 in the mouse retina using fluorescent microscopy, a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and flow cytometry. Forty-five mice and one eye per mouse were used. In Group 1, fluorescent microscopy was used to determine retinal uptake of 10 µL (0.004 mg/µL) of intravitreally injected BODIPY-labeled JP4-039 at 0, 15, and 60 min after injection. In Group 2, the TUNEL assay was performed to investigate the rate of apoptosis after irradiation in addition to JP4-039 injection, compared to controls. In Group 3, flow cytometry was used to determine the extent of inflammatory cell migration into the retina after irradiation in addition to JP4-039 injection, compared to controls. Maximal retinal uptake of JP4-039 was 15 min after intravitreal injection ( p < 0.0001). JP4-039-treated eyes had lower levels of retinal apoptosis (35.8 ± 2.5%) than irradiated controls (49.0 ± 2.7%; p = 0.0066) and demonstrated reduced migration of N1 cells (30.7 ± 11.7% vs. 77.7 ± 5.3% controls; p = 0.004) and M1 cells (76.6 ± 4.2 vs. 88.1 ± 3.7% controls, p = 0.04). Pretreatment with intravitreally injected JP4-039 reduced apoptosis and inflammatory cell migration in the irradiated mouse retina, marking the first confirmed effect of this molecule in retinal tissue. Further studies may allow for safety profiling and potential use for patients with radiation retinopathy.
- Published
- 2024
- Full Text
- View/download PDF
6. Randomized Control Trial of a School-Based Curriculum that Teaches About Multiple Forms of Abuse.
- Author
-
Bright MA, Huq MS, Miller MD, Patel S, Li Z, and Finkelhor D
- Subjects
- Child, Humans, Child, Preschool, Curriculum, Schools, School Health Services, Program Evaluation, Child Abuse prevention & control
- Abstract
Most school-based prevention curricula for young children fail to address multiple types of abuse and limit instruction to a single day, despite evidence that polyvictimization is common and children learn better when allowed to practice material repeatedly. This study utilized a cluster randomized control trial design to evaluate a multi-abuse prevention program, the Monique Burr Foundation for Children (MBF) Child Safety Matters®, based on varying lesson structure. Participants included nine Florida schools consisting of 843 children in grades K-2. Schools were randomized within cluster to implement in two lessons, four lessons, or after study data collection (i.e., control group). Lessons averaged 34 minutes ( SD = 8.8 minutes) in length for 2-lesson group and 23.6 minutes ( SD = 6.9 minutes) for the 4-lesson condition. Knowledge was assessed before implementation and on average 11 weeks after implementation. There were no statistical differences between clusters. Controlling for pre-test scores, schools in the four-lesson group scored highest on a measure of knowledge of potentially risky and unsafe situations ( M = 69.68, SE = .80) on post-test, followed by schools in the two-lesson group ( M = 67.31, SE = .77), followed by schools in the control group ( M = 62.92, SE = .76). Results support use of more frequent, shorter lessons for prevention programs and the promise of addressing multiple forms of child victimization., Competing Interests: Declaration of Conflicting InterestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF
7. Genetically Engineered Probiotic Limosilactobacillus reuteri Releasing IL-22 (LR-IL-22) Modifies the Tumor Microenvironment, Enabling Irradiation in Ovarian Cancer.
- Author
-
Hamade DF, Epperly MW, Fisher R, Hou W, Shields D, van Pijkeren JP, Leibowitz BJ, Coffman LG, Wang H, Huq MS, Huang Z, Rogers CJ, Vlad AM, Greenberger JS, and Mukherjee A
- Abstract
Despite recent advances in cancer therapy, ovarian cancer remains the most lethal gynecological cancer worldwide, making it crucial and of the utmost importance to establish novel therapeutic strategies. Adjuvant radiotherapy has been assessed historically, but its use was limited by intestinal toxicity. We recently established the role of Limosilactobacillus reuteri in releasing IL-22 (LR-IL-22) as an effective radiation mitigator, and we have now assessed its effect in an ovarian cancer mouse model. We hypothesized that an LR-IL-22 gavage would enable intestinal radioprotection by modifying the tumor microenvironment and, subsequently, improving overall survival in female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer. Herein, we report that the LR-IL-22 gavage not only improved overall survival in mice when combined with a PD-L1 inhibitor by inducing differential gene expression in irradiated stem cells but also induced PD-L1 protein expression in ovarian cancer cells and mobilized CD8+ T cells in whole abdomen irradiated mice. The addition of LR-IL-22 to a combined treatment modality with fractionated whole abdomen radiation (WAI) and systemic chemotherapy and immunotherapy regimens can facilitate a safe and effective protocol to reduce tumor burden, increase survival, and improve the quality of life of a locally advanced ovarian cancer patient.
- Published
- 2024
- Full Text
- View/download PDF
8. Single isocenter HyperArc treatment of multiple intracranial metastases: Targeting accuracy.
- Author
-
Li F, Mail N, Stefania diMayorca M, McCaw TJ, Ozhasoglu C, Lalonde R, Chang J, and Huq MS
- Subjects
- Humans, Radiotherapy Dosage, Radiotherapy Planning, Computer-Assisted methods, Radiotherapy, Intensity-Modulated methods, Radiosurgery methods, Brain Neoplasms diagnostic imaging, Brain Neoplasms radiotherapy, Brain Neoplasms surgery
- Abstract
Purpose/objectives: (A) To examine the alignment accuracy of CBCT guidance for brain metastases with off centered isocenters, (B) to test dose delivery and targeting accuracy for single isocenter treatments with multiple brain metastases. We report the results of the end-to-end test for Truebeam stereotactic radiosurgery (SRS)., Materials/methods: An anthropomorphic CT head phantom was drilled with five MOSFET inserts and two PTW Pinpoint chamber inserts. The phantom was simulated, planned, and delivered. For the purpose of comparing the accuracy of alignment, CBCTs were acquired with the isocenter centered and offset superiorly 8 cm, inferiorly 8 cm, anteriorly 7 cm, posteriorly 7 cm, and right 5 cm. There were six degrees of freedom corrections applied to the plans, as well as intentional rotational and translational errors for dose comparisons. Dose accuracy checks were performed with MOSFET and PTW Pinpoint chamber, and targeting accuracy was assessed with GafChromic films., Result: (A) Compared to centered CBCT, off-centered CBCT scan showed some alignment errors, with a maximum difference of 0.6-degree pitch and 0.9 mm translation when the phantom was placed 8 cm inferior off center. (B) For the single isocenter plan, measured doses of the five MOSFET were 95%-100% of the planned dose, whereas the multiple isocenter plans were 96%-100%. With intentional setup errors of 1-degree pitch, doses were 97.1%-100.4% compared to the perfect setup. The same was found for the two pinpoint chamber readings with 1-degree rotation and 1 mm translation. (C) Targeting accuracy for targets at the isocenter is 0.67 mm, within the machine specification of 0.75 mm. Targeting accuracy for isocenters 6-12 cm away from the target is in the range 0.67-1.18 mm., Conclusion: (A) Single isocenter HyperArc treatments for multiple brain metastases are feasible and targeting accuracy is clinically acceptable. (B) The vertex in a cranial scan is very important for proper alignment., (© 2023 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.)
- Published
- 2024
- Full Text
- View/download PDF
9. Inverse shielding and mutual exclusion for PET-MR hybrid imaging concerning induced positronium hyperfine splits radiations.
- Author
-
Wang K and Huq MS
- Abstract
Prevalent PET imaging reconstructs 2γ-photon pairs emitted after an annihilation from para-positronium (p-Ps) and rejects 3γ events from ortho-positronium (o-Ps) as noises. The 3γ/2γ decay ratio is ~ 3/7 in human body theoretically but in fact significantly lower due to pick-off process, hence PET imaging quality is well controlled. In a PET-MR hybrid unit, the MR magnetic field alters positronium decay patterns through magnetic quenching: all o-Ps and excited p-Ps states are split into finer quantum states under strong magnetic field, thus transitions between some triplet and singlet finer states (m
z = 0) were no longer forbidden, thus some o-Ps converts to p-Ps spontaneously by emitting hyperfine split (HFS) photons, which also drops 3γ/2γ ratio hence helps PET imaging quality. However, inverse magnetic quenching might also occur if any external source of HFS frequencies is nearby, thus many p-Ps convert to o-Ps by absorbing those HFS photons (induced HFS transitions). This will dramatically increase 3γ/2γ ratio and hence degrade PET imaging quality instantaneously. The HFS spectrum lies in a broad range of microwaves, from 0.02 to 200 GHz. To prevent inverse magnetic quenching, it is necessary to block external microwave sources outside the hybrid vault, by adding a thin metal layer at all directions of the vault. This could be achieved by adopting the metallic Faraday Cage, which was originally for MR shielding, with possible amendment if necessary. The frequencies of excitation pulses in MR imaging overlap with HFS spectrum, however, the chance for mutual interference during hybrid imaging is small, hence there seems no need to veto each other during hybrid scans., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
10. Chemical Carcinogen (Dimethyl-benzanthracene) Induced Transplantable Cancer in Fanconi Anemia (Fanca-/-) Mice.
- Author
-
Epperly MW, Mukherjee A, Fisher R, Shields D, Hou W, Wang H, Rigatti LH, Green A, Huq MS, and Greenberger JS
- Subjects
- Humans, Mice, Animals, Cell Line, Carcinogens toxicity, Fanconi Anemia Complementation Group A Protein genetics, Fanconi Anemia genetics, Fanconi Anemia metabolism, Neoplasms
- Abstract
Background/aim: Patients with radiation sensitive Fanconi anemia (FA) are presenting with cancers of the oral cavity, oropharynx, and other anatomic locations., Materials and Methods: Animal models for cancer in FA mice used orthotopic tumors from wild type mice. We derived a cancer cell line from Fanca-/- mice by topical application of the chemical carcinogen dimethyl benzanthracene (DMBA)., Results: A Fanca-/- mouse rhabdomyosarcoma was derived from a Fanca-/- (129/Sv) mouse. The in vitro clonogenic survival of the Fanca-/- clone 6 cancer cell line was consistent with the FA genotype. Transplanted tumors demonstrated hypoxic centers surrounded by senescent cells., Conclusion: This Fanca-/- mouse syngeneic cancer should provide a valuable resource for discovery and development of new normal tissue radioprotectors for patients with FA and cancer., (Copyright © 2023, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
11. Learning without contingencies: A loss of synergy between memory and reward circuits in schizophrenia.
- Author
-
Hasan SM, Huq MS, Chowdury AZ, Baajour S, Kopchick J, Robison AJ, Thakkar KN, Haddad L, Amirsadri A, Thomas P, Khatib D, Rajan U, Stanley JA, and Diwadkar VA
- Subjects
- Humans, Learning, Brain diagnostic imaging, Reward, Hippocampus, Magnetic Resonance Imaging, Schizophrenia complications, Schizophrenia diagnostic imaging
- Abstract
Motivational deficits in schizophrenia may interact with foundational cognitive processes including learning and memory to induce impaired cognitive proficiency. If such a loss of synergy exists, it is likely to be underpinned by a loss of synchrony between the brains learning and reward sub-networks. Moreover, this loss should be observed even during tasks devoid of explicit reward contingencies given that such tasks are better models of real world performance than those with artificial contingencies. Here we applied undirected functional connectivity (uFC) analyses to fMRI data acquired while participants engaged in an associative learning task without contingencies or feedback. uFC was estimated and inter-group differences (between schizophrenia patients and controls, n = 54 total, n = 28 patients) were assessed within and between reward (VTA and NAcc) and learning/memory (Basal Ganglia, DPFC, Hippocampus, Parahippocampus, Occipital Lobe) sub-networks. The task paradigm itself alternated between Encoding, Consolidation, and Retrieval conditions, and uFC differences were quantified for each of the conditions. Significantly reduced uFC dominated the connectivity profiles of patients across all conditions. More pertinent to our motivations, these reductions were observed within and across classes of sub-networks (reward-related and learning/memory related). We suggest that disrupted functional connectivity between reward and learning sub-networks may drive many of the performance deficits that characterize schizophrenia. Thus, cognitive deficits in schizophrenia may in fact be underpinned by a loss of synergy between reward-sensitivity and cognitive processes., Competing Interests: Declaration of competing interest The authors have no conflicts of interest to report., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
12. A novel approach to infectious disease control and radiotherapy risk management.
- Author
-
Islam NM, Wadi-Ramahi SJ, Lalonde R, Baig T, diMayorca M, Clump DA, and Huq MS
- Subjects
- Humans, Pandemics prevention & control, Risk Management, Risk Assessment, Radiation Oncology, COVID-19, Neoplasms, Healthcare Failure Mode and Effect Analysis
- Abstract
Background: Infectious disease outbreaks have always presented challenges to the operation of healthcare systems. In particular, the treatment of cancer patients within Radiation Oncology often cannot be delayed or compromised due to infection control measures. Therefore, there is a need for a strategic approach to simultaneously managing infection control and radiotherapy risks., Purpose: To develop a systematic risk management method that uses mathematical models to design mitigation efforts for control of an infectious disease outbreak, while ensuring safe delivery of radiotherapy., Methods: A two-stage failure mode and effect analysis (FMEA) approach is proposed to modify radiotherapy workflow during an infectious disease outbreak. In stage 1, an Infection Control FMEA (IC-FMEA) is conducted, where risks are evaluated based on environmental parameters, clinical interactions, and modeling of infection risk. occupancy risk index (ORI) is defined as a metric for infection transmission risk level in each room, based on the degree of occupancy. ORI, in combination with ventilation rate per person (R
p ), is used to provide a broad infection risk assessment of workspaces. For detailed IC-FMEA of clinical processes, infection control failure mode (ICFM) is defined to be any instance of disease transmission within the clinic. Infection risk priority number (IRPN) has been formulated as a function of time, distance, and degree of protective measures. Infection control measures are then systematically integrated into the workflow. Since the workflow is perturbed by infection control measures, there is a possibility of introducing new radiotherapy failure modes or increased likelihood of existing failure modes. Therefore, in stage 2, a conventional radiotherapy FMEA (RT-FMEA) should be performed on the adjusted workflow., Results: The COVID-19 pandemic was used to illustrate stage 1 IC-FMEA. ORI and Rp values were calculated for various workspaces within a clinic. A deep inspiration breath hold (DIBH) CT simulation was used as an example to demonstrate detailed IC-FMEA with ICFM identification and IRPN evaluation. A total of 90 ICFMs were identified in the DIBH simulation process. The calculated IRPN values were found to be progressively decreasing for workflows with minimal, moderate, and enhanced levels of protective measures., Conclusion: The framework developed in this work provides tools for radiotherapy clinics to systematically assess risk and adjust workflows during the evolving circumstances of any infectious disease outbreak., (© 2023 American Association of Physicists in Medicine.)- Published
- 2023
- Full Text
- View/download PDF
13. Release of Interferon-β (IFN-β) from Probiotic Limosilactobacillus reuteri -IFN-β (LR-IFN-β) Mitigates Gastrointestinal Acute Radiation Syndrome (GI-ARS) following Whole Abdominal Irradiation.
- Author
-
Hamade DF, Epperly MW, Fisher R, Hou W, Shields D, van Pijkeren JP, Mukherjee A, Yu J, Leibowitz BJ, Vlad AM, Coffman L, Wang H, Huq MS, Huang Z, Rogers CJ, and Greenberger JS
- Abstract
Irradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Thus, strategies to mitigate toxicity are important and can revitalize the current standard of care. We previously established that LR-IL-22 protects the intestine from WAI. We now hypothesize that LR-IFN-β is an effective radiation protector and mitigator and is rapidly cleared from the digestive tract, making it an option for intestinal radioprotection. We report that the gavage of LR-IFN-β during WAI provides improved intestinal barrier integrity and significantly preserves the numbers of Lgr5+GFP+ intestinal stem cells, improving survival. The rapid clearance of the genetically engineered probiotic from the digestive tract renders it a safe and feasible radiation mitigator. Therefore, the above genetically engineered probiotic is both a feasible and effective radiation mitigator that could potentially revolutionize the management of OC patients. Furthermore, the subsequent addition of platinum/taxane-based chemotherapy to the combination of WAI and LR-IFN-β should reduce tumor volume while protecting the intestine and should improve the overall survival in OC patients.
- Published
- 2023
- Full Text
- View/download PDF
14. Response to "Letter to the editor of radiotherapy and oncology regarding of the article "Dosimetric parameters related to occurrence of distant metastases and regional nodal relapse after SBRT for early-stage non-small cell lung cancer" by Lalonde et al."
- Author
-
Lalonde R, Abdelhakiem M, Keller A, and Huq MS
- Subjects
- Humans, Neoplasm Recurrence, Local pathology, Carcinoma, Non-Small-Cell Lung pathology, Radiosurgery, Lung Neoplasms pathology, Small Cell Lung Carcinoma
- Published
- 2022
- Full Text
- View/download PDF
15. Portal dosimetry correction method for validation of single isocenter VMAT plans for multiple brain metastases.
- Author
-
Lalonde RJ and Huq MS
- Subjects
- Humans, Radiometry methods, Radiotherapy Dosage, Radiotherapy Planning, Computer-Assisted methods, Brain Neoplasms radiotherapy, Brain Neoplasms secondary, Radiotherapy, Intensity-Modulated methods
- Abstract
Portal dosimetry is one option for verification of volumetric-modulated arc therapy (VMAT) planning for multiple brain metastases. However, due to the changing response of the portal imager with photon beam energy, the dose transmitted through closed multileaf collimator (MLC) leaves or narrow MLC gaps may be underestimated by the imager. We present a simple method for correcting for these effects that may be implemented within the Eclipse treatment planning system. We recalculated the predicted portal dose with and without this correction for 20 multiple brain met VMAT plans. Before the correction, 3/20 composite plan fields passed our standard quality assurance (QA) criteria (54/80 individual fields); the average gamma passing rate for the composite plans was 76.9 ± 16.6%, and the average gamma value across the composite plans was 0.67 ± 0.23. After correction, 20/20 composite plan fields passed the QA criteria (80/80 individual fields); the average gamma passing rate for composite plans was 99.2 ± 1.4%, the average gamma value across the composite plans was 0.33 ± 0.90. A measure of plan complexity, the average leaf pair opening could be correlated to the gamma analysis results for the uncorrected plans but not for the corrected plans., (© 2022 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.)
- Published
- 2022
- Full Text
- View/download PDF
16. A multi-institutional evaluation of small field output factor determination following the recommendations of IAEA/AAPM TRS-483.
- Author
-
Lechner W, Alfonso R, Arib M, Huq MS, Ismail A, Kinhikar R, Lárraga-Gutiérrez JM, Mani KR, Maphumulo N, Sauer OA, Shoeir S, Suriyapee S, and Christaki K
- Subjects
- Photons, Uncertainty, Water, Particle Accelerators, Radiometry
- Abstract
Purpose: The aim of this work was to test the implementation of small field dosimetry following TRS-483 and to develop quality assurance procedures for the experimental determination of small field output factors (SFOFs)., Materials and Methods: Twelve different centers provided SFOFs determined with various detectors. Various linac models using the beam qualities 6 MV and 10 MV with flattening filter and without flattening filter were utilized to generate square fields down to a nominal field size of 0.5 cm × 0.5 cm. The detectors were positioned at 10 cm depth in water. Depending on the local situation, the source-to-surface distance was either set to 90 cm or 100 cm. The SFOFs were normalized to the output of the 10 cm × 10 cm field. The spread of SFOFs measured with different detectors was investigated for each individual linac beam quality and field size. Additionally, linac-type specific SFOF curves were determined for each beam quality and the SFOFs determined using individual detectors were compared to these curves. Example uncertainty budgets were established for a solid state detector and a micro ionization chamber., Results: The spread of SFOFs for each linac and field was below 5% for all field sizes. With the exception of one linac-type, the SFOFs of all investigated detectors agreed within 10% with the respective linac-type SFOF curve, indicating a potential inter-detector and inter-linac variability., Conclusion: Quality assurance on the SFOF measurements can be done by investigation of the spread of SFOFs measured with multiple detectors and by comparison to linac-type specific SFOFs. A follow-up of a measurement session should be conducted if the spread of SFOFs is larger than 5%, 3%, and 2% for field sizes of 0.5 cm × 0.5 cm, 1 cm × 1 cm, and field sizes larger than 2 cm × 2 cm, respectively. Additionally, deviations of measured SFOFs to the linac-type-curves of more than 7%, 3%, and 2% for field sizes 0.5 cm × 0.5 cm, 1 cm × 1 cm, and field sizes larger than 1 cm × 1 cm, respectively, should be followed up., (© 2022 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.)
- Published
- 2022
- Full Text
- View/download PDF
17. A detailed process map for clinical workflow of a new biology-guided radiotherapy (BgRT) machine.
- Author
-
Hwang MS, Lalonde R, and Huq MS
- Subjects
- Biology, Humans, Positron Emission Tomography Computed Tomography, Prospective Studies, Radiotherapy Dosage, Radiotherapy Planning, Computer-Assisted methods, Workflow, Radiation Oncology
- Abstract
Purpose: Biology-guided radiotherapy (BgRT) is a new external beam radiation therapy modality combining PET-CT with a linear accelerator that has the potential to track and treat one or more tumors in real-time. The use of PET and radiopharmaceutical tracers introduces new processes that are different from the existing treatment processes. In this study, we have developed a process map for the clinical implementation of a prototype BgRT machine., Methods: A team of 13 members from various radiation therapy disciplines at our institution participated in developing a prospective process map for a prototype BgRT machine. The methodology provided by the AAPM TG 100 report was followed. In particular, the steps unique to the BgRT workflow, using hypofractionated stereotactic body radiation therapy with fluorodeoxyglucose radiolabeled with fluorine-18 (FDG) to guide beam delivery, were analyzed., Results: The multi-disciplinary team in the department of radiation oncology at our institution developed a prospective process map for the clinical BgRT workflow. By focusing on the appropriate level of detail, 15 major subprocesses, 133 steps, and 248 substeps were identified and the process map was agreed upon as being useful, implementable, and manageable. Seventy-four steps from nine subprocesses, 55.6% of the whole process, were analyzed to be the BgRT unique steps. They originate mainly from: (1) acquiring multiple PET images at the BgRT machine with separate patient visits, (2) creating a unique biological treatment volume for BgRT plan (PTV
BgRT ), and (3) BgRT plan optimization and treatment delivery using PET images., Conclusion: Using BgRT to irradiate multiple metastases in the same session will impact clinical workflow, thus a graphical process map depicting the new clinical workflow with an appropriate level of detail is critical for efficient, safe, and high-quality care. The prospective process map will guide the successful setup and use of the new BgRT system., (© 2022 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.)- Published
- 2022
- Full Text
- View/download PDF
18. Intestinal Radiation Protection and Mitigation by Second-Generation Probiotic Lactobacillus-reuteri Engineered to Deliver Interleukin-22.
- Author
-
Espinal A, Epperly MW, Mukherjee A, Fisher R, Shields D, Wang H, Huq MS, Hamade DF, Vlad AM, Coffman L, Buckanovich R, Yu J, Leibowitz BJ, van Pijkeren JP, Patel RB, Stolz D, Watkins S, Ejaz A, and Greenberger JS
- Subjects
- Endothelial Cells, Interleukins, Intestinal Mucosa metabolism, Intestines, Interleukin-22, Limosilactobacillus reuteri, Probiotics, Radiation Protection
- Abstract
(1) Background: The systemic administration of therapeutic agents to the intestine including cytokines, such as Interleukin-22 (IL-22), is compromised by damage to the microvasculature 24 hrs after total body irradiation (TBI). At that time, there is significant death of intestinal microvascular endothelial cells and destruction of the lamina propria, which limits drug delivery through the circulation, thus reducing the capacity of therapeutics to stabilize the numbers of Lgr5+ intestinal crypt stem cells and their progeny, and improve survival. By its direct action on intestinal stem cells and their villus regeneration capacity, IL-22 is both an ionizing irradiation protector and mitigator. (2) Methods: To improve delivery of IL-22 to the irradiated intestine, we gavaged Lactobacillus-reuteri as a platform for the second-generation probiotic Lactobacillus-reuteri -Interleukin-22 (LR-IL-22). (3) Results: There was effective radiation mitigation by gavage of LR-IL-22 at 24 h after intestinal irradiation. Multiple biomarkers of radiation damage to the intestine, immune system and bone marrow were improved by LR-IL-22 compared to the gavage of control LR or intraperitoneal injection of IL-22 protein. (4) Conclusions: Oral administration of LR-IL-22 is an effective protector and mitigator of intestinal irradiation damage.
- Published
- 2022
- Full Text
- View/download PDF
19. Dosimetric parameters related to occurrence of distant metastases and regional nodal relapse after SBRT for early-stage non-small cell lung cancer.
- Author
-
Lalonde R, Abdelhakiem M, Keller A, and Huq MS
- Subjects
- Humans, Neoplasm Recurrence, Local, Radiotherapy Dosage, Retrospective Studies, Carcinoma, Non-Small-Cell Lung radiotherapy, Carcinoma, Non-Small-Cell Lung surgery, Lung Neoplasms pathology, Radiosurgery, Small Cell Lung Carcinoma
- Abstract
Purpose: Previous studies have suggested that the dose immediately outside the PTV may impact the incidence of distant metastases after stereotactic body radiation therapy (SBRT) for patients with early-stage non-small cell lung cancer (NSCLC). In particular, Diamant et al. [1,2] reported a correlation between the mean EQD2 of a 30 mm shell around the PTV and both local control and the rate of distant metastases. In this study, we assess this parameter and others in a series of patients with radiographically presumed or biopsy-proven early-stage NSCLC treated at our institution with stereotactic body radiotherapy (SBRT) between 2017 and 2019., Materials/methods: We reviewed the dosimetry, local control, regional nodal relapse, and rate of distant metastases for 304 patients with 325 lesions treated with SBRT at our institution. Dosimetric parameters investigated include the prescribed dose, minimum and mean doses to the PTV, conformity index, and the mean EQD2 to a 30 mm shell around the PTV. Time to each event was defined from date of last fraction of SBRT to date of event, with event-free patients censored at last radiographic follow-up. Univariate (UVA) Cox regression analysis was performed on the collected parameters to assess for correlation with regional nodal relapse and rate of distant metastases., Results: There was no significant correlation between the mean EQD2 dose to a 30 mm shell around the PTV and the rate of distant metastases. On UVA Cox proportional hazards analysis, positive predictors of reduced incidence of distant metastases were PTV <22 cc (vs. ≥22 cc, p = 0.01) and GTV <10 cc (vs. ≥10 cc, p < 0.01), with GTV <10 cc also being a positive predictor of reduced incidence of regional nodal relapse (p < 0.01). In the subset of patients treated with 4-5 fractions, mean EQD2 dose to the 30 mm shell around the PTV ≥21 Gy was associated with increased incidence of distant metastases (HR 2.42, 95% CI 1.06-5.53, p = 0.04), differing from prior data from Diamant et al. CONCLUSIONS: We did not observe a correlation between the rate of distant metastases and dose outside the PTV, as reported by other groups; rather, we noted an opposite trend in patients treated with 4-5 fractions. Our data show additional correlations between distant metastases and tumor size., Competing Interests: Conflicts of interest None declared., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
20. Is Halcyon feasible for single thoracic or lumbar vertebral segment SBRT?
- Author
-
Li F, Park J, Lalonde R, Jang SY, diMayorca MS, Flickinger JC, Keller A, and Huq MS
- Subjects
- Humans, Radiotherapy Dosage, Radiotherapy Planning, Computer-Assisted, Retrospective Studies, Spine, Radiosurgery, Radiotherapy, Intensity-Modulated
- Abstract
Purpose: Halcyon linear accelerators employ intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) techniques. The Halcyon offers translational, but not rotational, couch correction, which only allows a 3 degrees of freedom (3-DOF) correction. In contrast, the TrueBeam (TB) linear accelerator offers full 6-DOF corrections. This study aims to evaluate the difference in treatment plan quality for single thoracic or lumbar vertebral segment SBRT between the Halcyon and TB linear accelerators. In addition, this study will also investigate the effect of patient rotational setup errors on the final plan quality., Methods: We analyzed 20 patients with a single-level spine metastasis located between the T7 and L5 vertebrae near the spinal canal. The median planning target volume was 52.0 cm
3 (17.9-138.7 cm3 ). The median tumor diameter in the axial plane was 4.6 cm (range 1.7-6.8 cm), in the sagittal plane was 3.3 cm (range 2-5 cm). The prescription doses were either 12-16 Gy in 1 fraction or 18-24 Gy in 3 fractions. All patients were treated on the TB linear accelerator with a 2.5 mm Multi-Leaf Collimator (MLC) leaf width. Treatment plans were retrospectively created for the Halcyon, which has a 5 mm effective MLC leaf width. The 20 patients had a total of 50 treatments. Analysis of the 50 cone beam computed tomography (CBCT) scans showed average rotational setup errors of 0.6°, 1.2°, and 0.8° in pitch, yaw, and roll, respectively. Rotational error in roll was not considered in this study, as the original TB plans used a coplanar volumetric modulated arc therapy (VMAT) technique, and each 1° of roll will contribute an error of 1/360. If a plan has 3 arcs, the contribution from errors in roll will be < 0.1%. To simulate different patient setup errors, for each patient, 12 CT image datasets were generated in Velocity AI with different rotational combinations at a pitch and yaw of 1°, 2°, and 3°, respectively. We recalculated both the TB and Halcyon plans on these rotated images. The dosimetric plan quality was evaluated based on the percent tumor coverage, the Conformity Index (CI), Gradient Index (GI), Homogeneity index (HI), the maximum dose to the cord/cauda, and the volume of the cord/cauda receiving 8, 10, and 12 Gy (V8Gy, V10Gy and V12Gy). Paired t-tests were performed between the original and rotated plans with a significance level of 0.05., Results: The Eclipse based VMAT plans on Halcyon achieved a similar target coverage (92.3 ± 3.0% vs. 92.4 ± 3.3%, p = 0.82) and CI (1.0 ± 0.1 vs. 1.1 ± 0.2, p = 0.12) compared to the TB plans. The Gradient index of Halcyon is higher (3.96 ±0.8) than TB (3.85 ±0.7), but not statistically significant. The maximum dose to the spinal cord/cauda was comparable (11.1 ± 2.8 Gy vs. 11.4 ± 3.6 Gy, p = 0.39), as were the V8Gy, V10Gy and V12Gy to the cord/cauda. The dosimetric influence of patient rotational setup error was statistically insignificant for rotations of up to 1° pitch/yaw (with similar target coverage, CI, max cord/cauda dose and V8Gy, V10Gy, V12Gy for cord/cauda). The total number of monitor units (MUs) for Halcyon (4998 ± 1688) was comparable to that of TB (5463 ± 2155) (p = 0.09)., Conclusions: The Halcyon VMAT plans for a single thoracic or lumbar spine metastasis were dosimetrically comparable to the TB plans. Patient rotation within 1° in the pitch and yaw directions, if corrected by translation, resulted in insignificant dosimetric effects. The Halcyon linear accelerator is an acceptable alternative to TB for the treatment of single thoracic or lumbar spinal level metastasis, but users need to be cautious about the patient rotational setup error. It is advisable to select patients appropriately, including only those with the thoracic or lumbar spine involvement and keeping at least 2 mm separation between the target and the cord/cauda. More margin is needed if the distance between the isocenter and cord/cauda is larger. It is advisable to place the planning isocenter close to the spinal canal to further mitigate the rotational error., Summary: We simulated various scenarios of patient setup errors with different rotational combinations of pitch and yaw with 1°, 2°, and 3°, respectively. Rotation was corrected with translation only to mimic the Halcyon treatment scenario. Using the Halcyon for treating a tumor in a single thoracic or lumbar vertebral segment is feasible, but caution should be noted in patients requiring rotational corrections of > 1° in the absence of 6-DOF correction capabilities., (© 2021 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.)- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.