1. Multimodal data for behavioural authentication in Internet of Things environments
- Author
-
Andraž Krašovec, Gianmarco Baldini, and Veljko Pejović
- Subjects
Ubiquitous sensing ,User authentication ,Inertial measurement unit ,Wireless ranging ,Electroencephalogram ,Cognitive load ,Computer applications to medicine. Medical informatics ,R858-859.7 ,Science (General) ,Q1-390 - Abstract
Identifying humans based on their behavioural patterns represents an attractive basis for access control as such patterns appear naturally, do not require a focused effort from the user side, and do not impose the additional burden of memorising passwords. One means of capturing behavioural patterns is through passive sensors laid out in a target environment. Thanks to the proliferation of the Internet of Things (IoT), sensing devices are already embedded in our everyday surroundings and represent a rich source of multimodal data. Nevertheless, collecting such data for authentication research purposes is challenging, as it entails management and synchronisation of a range of sensing devices, design of diverse tasks that would evoke different behaviour patterns, storage and pre-processing of data arriving from multiple sources, and the execution of long-lasting user activities. Consequently, to the best of our knowledge, no publicly available datasets suitable for behaviour-based authentication research exist. In this brief article, we describe the first multimodal dataset for behavioural authentication research collected in a sensor-enabled IoT setting. The dataset comprises of high-frequency accelerometer, gyroscope, and force sensor data collected from an office-like environment. In addition, the dataset contains 3D point clouds collected with wireless radar and electroencephalogram (EEG) readings from a wireless EEG cap worn by the study participants. Within the environment, 54 volunteers conducted 6 different tasks that were constructed to elicit different behaviours and different cognitive load levels, resulting in a total of 16 h of multimodal data. The richness of the dataset comprising 5 different sensing modalities, a variability of tasks including keyboard typing, hand gesturing, walking, and other activities, opens a range of opportunities for research in behaviour-based authentication, but also the understanding of the role of different tasks and cognitive load levels on human behaviour.
- Published
- 2024
- Full Text
- View/download PDF