1. Developmental nicotine exposure alters cardiovascular structure and function in neonatal and juvenile rats.
- Author
-
Flanigan EG, Farman GP, Dennis MR, Wollman L, Van Den Berg M, Granzier H, Banek CT, and Fregosi RF
- Abstract
Here we test the hypothesis that continuous nicotine exposure throughout pre- and postnatal development (developmental nicotine exposure, DNE) alters cardiovascular structure and function in neonatal and juvenile rats. Echocardiography showed that DNE reduced left ventricular mass, left ventricular outflow tract (LVOT) diameter, and posterior wall thickness, but only in females. Both male and female DNE rats had a lower end-systolic volume, higher ejection fraction, and increased fractional shortening, with unchanged stroke volume and cardiac output. Left ventricular single cardiac myocytes from male and female DNE animals exhibited increased calcium-evoked maximal tension with no effect on EC50. Tail-cuff plethysmography in awake rats showed that DNE males had lower systolic blood pressure and higher heart rate than control males. No significant changes in preload, afterload, or the in vitro renal artery response to vasodilators was observed. The results suggest that DNE enhances myocyte tension-generating capacity, possibly compensating for an unknown developmental insult, which may differ in males and females. While this adaptation maintains normal resting cardiac function, it may lead to reduced cardiac reserve, increased energy demand, and elevated oxidative stress, potentially compromising both short-and-long-term cardiovascular health in developing neonates.
- Published
- 2024
- Full Text
- View/download PDF