1. Polyamide microplastics can mitigate the effects of pathogenic bacterium on the health of marine mussels.
- Author
-
Pan Y, Zhao W, Fang JK, Shi J, Aboraya MH, Li D, Hu M, and Wang Y
- Subjects
- Animals, Water Pollutants, Chemical toxicity, Microplastics toxicity, Vibrio parahaemolyticus drug effects, Mytilus drug effects, Mytilus microbiology, Biofilms drug effects, Nylons chemistry
- Abstract
Vibrio parahaemolyticus and microplastics are prevalent in the ocean. Bacteria attach onto plastic particles, forming harmful biofilms that collectively threaten bivalve health. This study investigates the interaction between polyamide microplastics (PA: particle size 38 ± 12 µm) and V. parahaemolyticus, as well as their combined impact on thick-shelled mussels (Mytilus coruscus). We introduced 10
11 CFU/L of V. parahaemolyticus into varying PA concentrations (0, 5, 50, and 500 particles/L) to observe growth over 14 h and biofilm formation after 48 h. Our findings indicate that microplastics suppress biofilm formation and virulence gene expression. Four treatments were established to monitor mussel responses: a control group without PA or V. parahaemolyticus; a group with 50 particles/L PA; a group with 1011 CFU/L V. parahaemolyticus; and a co-exposure group with both 50 particles/L PA and 1011 CFU/L V. parahaemolyticus, over a 14-day experiment. However, combined stress from microplastics and Vibrio led to immune dysregulation in mussels, resulting in intestinal damage and microbiome disruption. Notably, V. parahaemolyticus had a more severe impact on mussels than microplastics alone, yet their coexistence reduced some harmful effects. This study is the first to explore the interaction between microplastics and V. parahaemolyticus, providing important insights for ecological risk assessments., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF