11 results on '"Esben Auken"'
Search Results
2. Automated Transient Electromagnetic Data Processing for Ground-Based and Airborne Systems by a Deep Learning Expert System.
- Author
-
Muhammad Rizwan Asif, Pradip K. Maurya, Nikolaj Foged, Jakob Juul Larsen, Esben Auken, and Anders Vest Christiansen
- Published
- 2022
- Full Text
- View/download PDF
3. N-Map:High-resolution groundwater N-retention mapping and modelling by integration of geophysical, geological, geochemical, and hydrological data
- Author
-
Anders V. Christiansen, Rasmus R. Frederiksen, Troels N. Vilhelmsen, Steen Christensen, Pradip Kumar Maurya, Birgitte Hansen, Hyojin Kim, Anne-Sophie Høyer, Jens Aamand, Rasmus Jakobsen, Christen D. Børgesen, Brian H. Jacobsen, and Esben Auken
- Subjects
Geochemical sampling ,Geophysical mapping ,Environmental Engineering ,Farm implementation ,Multiple realizations ,N-retention ,General Medicine ,Management, Monitoring, Policy and Law ,Waste Management and Disposal ,Uncertainty quantification - Abstract
A key aspect of protecting aquatic ecosystems from agricultural nitrogen (N) is to locate (i) farmlands where nitrate leaches from the bottom of the root zone and (ii) denitrifying zones in the aquifers where nitrate is removed before entering the surface water (N-retention). N-retention affects the choice of field mitigation measures to reduce delivered N to surface water. Farmland parcels associated with high N-retention gives the lowest impact of the targeted field measures and vice versa. In Denmark, a targeted N-regulation approach is currently implemented on small catchment scale (approx. 15 km2). Although this regulatory scale is much more detailed than what has been used previously, it is still so large that regulation for most individual fields will be either over- or under-regulated due to large spatial variation in the N-retention. The potential cost reduction for farmers is of up to 20–30% from detailed retention mapping at the field scale compared to the current small catchment scale. In this study, we present a mapping framework (N-Map) for differentiating farmland according to their N-retention, which can be used for improving the effectiveness of targeted N-regulation. The framework currently only includes N-retention in the groundwater. The framework benefits from the incorporation of innovative geophysics in hydrogeological and geochemical mapping and modelling. To capture and describe relevant uncertainties a large number of equally probable realizations are created through Multiple Point Statistical (MPS) methods. This allows relevant descriptions of uncertainties of parts of the model structure and includes other relevant uncertainty measures that affects the obtained N-retention. The output is data-driven high-resolution groundwater N-retention maps, to be used by the individual farmers to manage their cropping systems due to the given regulatory boundary conditions. The detailed mapping allows farmers to use this information in the farm planning in order to optimize the use of field measures to reduce delivered agricultural N to the surface water and thereby lower the costs of the field measures. From farmer interviews, however, it is clear that not all farms will have an economic gain from the detailed mapping as the mapping costs will exceed the potential economic gains for the farmers. The costs of N-Map is here estimated to 5–7 €/ha/year plus implementation costs at the farm. At the society level, the N-retention maps allow authorities to point out opportunities for a more targeted implementation of field measures to efficiently reduce the delivered N-load to surface waters.
- Published
- 2023
- Full Text
- View/download PDF
4. Fast 2.5D and 3D inversion of transient electromagnetic surveys using the octree-based finite-element method
- Author
-
Longying Xiao, Gianluca Fiandaca, Bo Zhang, Esben Auken, and Anders Vest Christiansen
- Subjects
MESH ,time-domain ,TTEM ,3-DIMENSIONAL INVERSION ,inversion ,MAXWELLS EQUATIONS ,Geophysics ,electromagnetics ,Finite element ,Geochemistry and Petrology ,SIMULATION ,RESISTIVITY ,SYSTEM ,3D - Abstract
Two efficient implementations of 3D and 2.5D modeling and inversion are presented to be applicable to large-scale transient electromagnetic (TEM) method explorations. The key novel features are (1) forward response and Jacobian calculations are implemented using the octree-based finite-element method, (2) a mirror approach is used to build a 2.5D inversion scheme for further efficiency, and (3) a flexible link between the forward mesh and inversion model is applied on 3D and 2.5D schemes based on the voxel formulation. We compare the performance of the new implementations with 3D modeling using tetrahedral meshes, with respect to speed and memory requirements. The 3D octree algorithm requires less than 1/3 of the computational time compared with a 3D tetrahedral scheme for equivalent accuracy. The 2.5D octree algorithm further speeds up the process by reducing the computational time by another factor of two. The inversion uses the Levenberg-Marquart approach minimizing the least-squares criterion of the objective function. We determine the utility of our inversion approach on a synthetic example and a field example. In the synthetic example, the 3D octree inversion result finds superior resolution of a 3D anomaly compared with a 1D result, whereas the 2.5D inversion result is, expectedly, between the 1D and 3D results, but with favorable computational expenses compared with the full 3D solution. The field data set contains 200 soundings, and we perform a 3D inversion on the full survey. A 24-sounding section is then selected for the 2.5D inversion. The 2.5D inversion result finds resistivity features similar to the 3D inversion result at the selected profile. Hence, we conclude that the presented implementations are capable of handling relatively large TEM surveys on modern computational platforms. This could be smaller subsets of production-size surveys where 2D and 3D effects are pronounced.
- Published
- 2022
- Full Text
- View/download PDF
5. Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
- Author
-
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
- Subjects
GROUNDWATER ,WATER ,General Earth and Planetary Sciences ,General Environmental Science - Abstract
Imaging geological layers beneath lakes, rivers, and shallow seawater provides detailed information critical for hydrological modeling, geologic studies, contaminant mapping, and more. However, significant engineering and interpretation challenges have limited the applications, preventing widespread adoption in aquatic environments. We have developed a towed transient electromagnetic (tTEM) system for a new, easily configurable floating, transient electromagnetic instrument (FloaTEM) capable of imaging the subsurface beneath both freshwater and saltwater. Based on the terrestrial tTEM instrument, the FloaTEM system utilizes a similar philosophy of a lightweight towed transmitter with a trailing offset receiver pulled by a small boat. The FloaTEM system is tailored to the specific freshwater or saltwater application as necessary, allowing investigations down to 100 m in freshwater environments and up to 20 m on saline waters. Through synthetic analysis, we show how the depth of investigation of the FloaTEM system greatly depends on the resistivity and thickness of the water column. The system has been successfully deployed in Denmark for a variety of hydrologic investigations, improving the ability to understand and model processes beneath water bodies. We present two freshwater applications and a saltwater application. Imaging results reveal significant heterogeneities in the sediment types below the freshwater lakes. The saline water example demonstrates that the system is capable of identifying and distinguishing clay and sand layers below the saline water column.
- Published
- 2022
- Full Text
- View/download PDF
6. Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data
- Author
-
Muhammad Rizwan Asif, Nikolaj Foged, Pradip Kumar Maurya, Denys James Grombacher, Anders Vest Christiansen, Esben Auken, and Jakob Juul Larsen
- Subjects
Airborne survey ,inversion ,least squares ,Geophysics ,electromagnetics ,Geochemistry and Petrology ,neural networks - Abstract
Airborne time-domain electromagnetic surveys produce extremely large data sets with thousands of line kilometers of data and millions of possible models to explain the data. Inversion of such data sets to obtain the resistivity structures of the subsurface is computationally intensive and involves calculation of a significant number of forward and derivative responses for solving the least-squares inverse problem. The flight altitude of the airborne system needs to be included in the modeling, which adds further complexity. We propose to integrate neural networks in a damped iterative least-squares inversion framework to expedite the inversion process. We train two separate neural networks to predict the forward responses and partial derivatives independently for a broad range of resistivity structures and flight altitudes. Data inversion is not only used for producing the final subsurface models but also used during data processing, or to produce intermediate results during a survey. With these purposes in mind, we provide three inversion schemes with a tunable balance between computational time and modeling accuracy: (1) numerical forward responses used initially in combination with neural network derivatives, and the derivatives switched to a numerical solution in final iterations, (2) numerical forward responses in combination with neural network derivatives used throughout the inversion, and (3) only neural network forward responses and derivatives used in inversion. Experiments on field data find that we improve inversion speed without any loss in modeling accuracy with our first approach, whereas the second scheme gives a significant speedup at the cost of minor and often acceptable deviations in the inversion results from the conventional nonlinear inversion. The last approach is the fastest and captures the overall resistivity structures quite well. Therefore, depending on the modeling accuracy, inversion speedup factors of up to 50 are realized by using the proposed schemes.
- Published
- 2022
- Full Text
- View/download PDF
7. Nature
- Author
-
Carol A. Finn, Paul A. Bedrosian, W. Steven Holbrook, Esben Auken, Benjamin R. Bloss, and Jade Crosbie
- Subjects
Multidisciplinary - Abstract
The nature of Yellowstone National Park’s plumbing system linking deep thermal fluids to its legendary thermal features is virtually unknown. The prevailing concepts of Yellowstone hydrology and chemistry are that fluids reside in reservoirs with unknown geometries, flow laterally from distal sources and emerge at the edges of lava flows. Here we present a high-resolution synoptic view of pathways of the Yellowstone hydrothermal system derived from electrical resistivity and magnetic susceptibility models of airborne geophysical data. Groundwater and thermal fluids containing appreciable total dissolved solids significantly reduce resistivities of porous volcanic rocks and are differentiated by their resistivity signatures. Clay sequences mapped in thermal areas and boreholes typically form at depths of less than 1,000 metres over fault-controlled thermal fluid and/or gas conduits. We show that most thermal features are located above high-flux conduits along buried faults capped with clay that has low resistivity and low susceptibility. Shallow subhorizontal pathways feed groundwater into basins that mixes with thermal fluids from vertical conduits. These mixed fluids emerge at the surface, controlled by surficial permeability, and flow outwards along deeper brecciated layers. These outflows, continuing between the geyser basins, mix with local groundwater and thermal fluids to produce the observed geochemical signatures. Our high-fidelity images inform geochemical and groundwater models for hydrothermal systems worldwide. This work was supported by the US Geological Survey Mineral and Energy Resources and Volcanic Hazards Programs, NSF grant no. EPS-1208909 and the University of Wyoming Office of Research and Economic Development. Published version Authored by U.S. government employees and therefore in the public domain.
- Published
- 2022
- Full Text
- View/download PDF
8. Accelerated 2.5-D inversion of airborne transient electromagnetic data using reduced 3-D meshing
- Author
-
Kim Wann Engebretsen, Bo Zhang, Gianluca Fiandaca, Line Meldgaard Madsen, Esben Auken, and Anders Vest Christiansen
- Subjects
CONSTRUCTION ,TEM-DATA ,APPROXIMATE 2D INVERSION ,Hydrogeophysics ,MODEL ,Geophysics ,RESOLUTION ,Numerical modelling ,Geochemistry and Petrology ,Electrical properties ,CONSTRAINED INVERSION ,MAYOTTE ,Inverse theory ,ISLANDS ,Controlled source electromagnetics (CSEM) - Abstract
SUMMARY Airborne systems collecting transient electromagnetic data are able to gather large amounts of data over large areas in a very short time. These data are most often interpreted through 1-D inversions, due to the availability of robust, fast and efficient codes. However, in areas where the subsurface contains complex structures or large conductivity contrasts, 1-D inversions may introduce artefacts into the models, which may prevent correct interpretation of the results. In these cases, 2-D or 3-D inversion should be used. Here, we present a 2.5-D inversion code using 3-D forward modelling combined with a 2-D model grid. A 2.5-D inversion is useful where the flight lines are spaced far apart, in which case a 3-D inversion would not add value in relation to the added computational cost and complexity. By exploiting the symmetry of the transmitter and receiver system we are able to perform forward calculations on a reduced 3-D mesh using only half the domain transecting the centre of the transmitter and receiver system. The forward responses and sensitivities from the reduced 3-D mesh are projected onto a structured 2-D model grid following the flight direction. The difference in forward calculations is within 1.4 per cent using the reduced mesh compared to a full 3-D solution. The inversion code is tested on a synthetic example constructed with complex geology and high conductivity contrasts and the results are compared to a 1-D inversion. We find that the 2.5-D inversion recovers both the conductivity values and shape of the true model with a significantly higher accuracy than the 1-D inversion. Finally, the results are supported by a field case using airborne TEM data from the island of Mayotte. The inverted flight line consisted of 418 soundings, and the inversion spent an average of 6750 s per iteration, converging in 16 iterations with a peak memory usage of 97 GB, using 18 logical processors. In general, the total time of the 2-D inversions compared to a full 3-D inversion is reduced by a factor of 2.5 while the memory consumption was reduced by a factor of 2, reflecting the half-mesh approach.
- Published
- 2022
- Full Text
- View/download PDF
9. Brief communication: The hidden labyrinth: Deep groundwater in Wright Valley, Antarctica
- Author
-
Hilary A. Dugan, Peter T. Doran, Denys Grombacher, Esben Auken, Thue Bording, Nikolaj Foged, Neil Foley, Jill Mikucki, Ross A. Virginia, and Slawek Tulaczyk
- Subjects
Earth-Surface Processes ,Water Science and Technology - Abstract
Since the 1960s, a deep groundwater system in Wright Valley, Antarctica, has been the hypothesized source of brines to hypersaline Don Juan Pond and Lake Vanda, both of which are rich in calcium and chloride. Modeling studies do not support other possible mechanisms, such as evaporative processes, that could have led to the current suite of ions present in both waterbodies. In 2011 and 2018, an airborne electromagnetic survey was flown over Wright Valley to map subsurface resistivity (down to 600 m) in exploration of liquid water. The surveys revealed widespread unfrozen brine in the subsurface near Lake Vanda, Don Juan Pond, and the North Fork of Wright Valley. While our geophysical survey can neither confirm nor deny deep groundwater connectivity between Lake Vanda and Don Juan Pond, it does point to the potential for deep valley-wide brine, likely within the Ferrar Dolerite formation.
- Published
- 2022
- Full Text
- View/download PDF
10. Inversion of induced polarization-affected towed-transient electromagnetic data in a lateritic regolith geology:A case study from western Tanzania
- Author
-
Pradip Kumar Maurya, Denys Grombacher, Johan Lind, John W. Lane, and Esben Auken
- Subjects
Geophysics ,electromagnetics ,induced polarization (IP) ,Geochemistry and Petrology ,Africa ,Inversion ,timedomain - Abstract
For several decades, induced polarization (IP) effects on transient electromagnetic (TEM) responses have been observed. These effects can manifest as late-time negative transients or as rapidly decaying curves and are usually associated with highly polarizable bodies. If neglected, IP effects can lead to erroneous resistivity models. Recent work allows IP effects to be incorporated into the inversion of TEM data on a more routine basis. In a recent field survey in western Tanzania, strongly IP-affected TEM signals are observed using a towed-transient electromagnetic (tTEM) system. The survey have been carried out to locate drinking water resources in a weathered regolith setting. In these settings, an inversion of tTEM data using a resistivity-only forward model (i.e., IP neglected) cannot fit the data and severely limits the value of the TEM data for hydrogeologic interpretation. To account for IP effects, we have applied a modified version of the Cole-Cole model called the maximum phase angle (MPA) model to invert IP-affected tTEM data. The MPA model incorporates four inversion model parameters: resistivity ([Formula: see text]), MPA ([Formula: see text]), relaxation time ([Formula: see text]), and frequency exponent ([Formula: see text]). The MPA model fits the data well and improves the reliability of the resistivity model. In much of the surveyed region, the inverted models using MPA display a three-layer system consisting of an upper resistive laterite layer of varying thickness and an intermediate polarizable conductive unit overlying more resistive weathered basement rocks. The conductive polarizable layer is interpreted as a chemically weathered saprolite separating the surficial and deeper aquifers. Overall, tTEM inversion results provide a local understanding of groundwater systems, especially in such regions with very limited subsurface knowledge.
- Published
- 2022
- Full Text
- View/download PDF
11. Comparison of ground-based and airborne transient electromagnetic methods for mapping glacial and permafrost environments: Cases from McMurdo Dry Valleys, Antarctica
- Author
-
Line M. Madsen, Thue Bording, Denys Grombacher, Nikolaj Foged, Neil Foley, Hilary A. Dugan, Peter T. Doran, Jill Mikucki, Slawek Tulaczyk, and Esben Auken
- Subjects
Hydrogeophysics ,Transient EM ,Antarctica ,General Earth and Planetary Sciences ,Geotechnical Engineering and Engineering Geology ,Electromagnetic theory - Abstract
The transient electromagnetic (TEM) method is a non-invasive geophysical tool well-suited for subsurface imaging in cold and polar regions, where common targets are associated with strong contrasts in electrical resistivity. By imaging the electrical properties of the subsurface, the TEM methods can discriminate between geological units such as frozen ground (permafrost), fresh/saline groundwater systems, and bedrock/glacier ice. In this study, we compare TEM data acquired with ground-based and airborne TEM systems. We demonstrate the mapping capabilities of these two approaches in high latitude polar environments with datasets from Taylor Glacier, Lake Vanda, and Canada Glacier in the McMurdo Dry Valleys of Antarctica. The results show a high consistency between the airborne and ground-based TEM data, both with a high resolution and a deep penetration depth down to hundreds of meters due to the resistive background material, which makes both approaches capable of mapping hydrological systems and identifying the base of glaciers. The airborne TEM approach offers an unmatched spatial data coverage in difficult terrain and a far improved lateral resolution compared to the static ground-based system. The ground-based TEM system offers the possibility for using larger transmitter coils and longer stacking times and therefore has potential for reaching deeper penetration depths. The ground-based TEM approach is hence a valuable tool that can provide consistent imaging results while also being far more accessible in terms of cost and field logistics compared to an airborne TEM campaign.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.