1. The Role of GaN in the Heterostructure WS2/GaN for SERS Applications
- Author
-
Tsung-Shine Ko, En-Ting Lin, Yen-Teng Ho, and Chen-An Deng
- Subjects
SERS ,WS2 ,GaN ,heterostructure ,charge transfer ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
In the application of WS2 as a surface–enhanced Raman scattering (SERS) substrate, enhancing the charge transfer (CT) opportunity between WS2 and analyte is an important issue for SERS efficiency. In this study, we deposited few-layer WS2 (2–3 layers) on GaN and sapphire substrates with different bandgap characteristics to form heterojunctions using a chemical vapor deposition. Compared with sapphire, we found that using GaN as a substrate for WS2 can effectively enhance the SERS signal, with an enhancement factor of 6.45 × 104 and a limit of detection of 5 × 10−6 M for probe molecule Rhodamine 6G according to SERS measurement. Analysis of Raman, Raman mapping, atomic force microscopy, and SERS mechanism revealed that The SERS efficiency increased despite the lower quality of the WS2 films on GaN compared to those on sapphire, as a result of the increased number of transition pathways present in the interface between WS2 and GaN. These carrier transition pathways could increase the opportunity for CT, thus enhancing the SERS signal. The WS2/GaN heterostructure proposed in this study can serve as a reference for enhancing SERS efficiency.
- Published
- 2023
- Full Text
- View/download PDF