6 results on '"Cécile Monteux"'
Search Results
2. Large and Nonlinear Permeability Amplification with Polymeric Additives in Hydrogel Membranes
- Author
-
Malak Alaa Eddine, Sabrina Belbekhouche, Sixtine de Chateauneuf-Randon, Thomas Salez, Artem Kovalenko, Bruno Bresson, and Cécile Monteux
- Subjects
Inorganic Chemistry ,Polymers and Plastics ,Organic Chemistry ,Materials Chemistry - Published
- 2022
- Full Text
- View/download PDF
3. Mousses lixiviantes - Réduire l’impact de l’extraction des métaux
- Author
-
Cécile MONTEUX and Grégory LEFEVRE
- Published
- 2023
- Full Text
- View/download PDF
4. From Individual Liquid Films to Macroscopic Foam Dynamics: A Comparison between Polymers and a Nonionic Surfactant
- Author
-
Alesya Mikhailovskaya, Emmanouil Chatzigiannakis, Damian Renggli, Jan Vermant, Cécile Monteux, Institut de Chimie et des Matériaux Paris-Est (ICMPE), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Eindhoven University of Technology [Eindhoven] (TU/e), Department of Materials [ETH Zürich] (D-MATL), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Sciences et Ingénierie de la Matière Molle (UMR 7615) (SIMM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Group Anderson
- Subjects
Electrochemistry ,[CHIM]Chemical Sciences ,General Materials Science ,Surfaces and Interfaces ,Condensed Matter Physics ,Spectroscopy - Abstract
Foams can resist destabilizaton in ways that appear similar on a macroscopic scale, but the microscopic origins of the stability and the loss thereof can be quite diverse. Here, we compare both the macroscopic drainage and ultimate collapse of aqueous foams stabilized by either a partially hydrolyzed poly(vinyl alcohol) (PVA) or a nonionic low-molecular-weight surfactant (BrijO10) with the dynamics of individual thin films at the microscale. From this comparison, we gain significant insight regarding the effect of both surface stresses and intermolecular forces on macroscopic foam stability. Distinct regimes in the lifetime of the foams were observed. Drainage at early stages is controlled by the different stress-boundary conditions at the surfaces of the bubbles between the polymer and the surfactant. The stress-carrying capacity of PVA-stabilized interfaces is a result of the mutual contribution of Marangoni stresses and surface shear viscosity. In contrast, surface shear inviscidity and much weaker Marangoni stresses were observed for the nonionic surfactant surfaces, resulting in faster drainage times, both at the level of the single film and the macroscopic foam. At longer times, the PVA foams present a regime of homogeneous coalescence where isolated coalescence events are observed. This regime, which is observed only for PVA foams, occurs when the capillary pressure reaches the maximum disjoining pressure. A final regime is then observed for both systems where a fast coalescence front propagates from the top to the bottom of the foams. The critical liquid fractions and capillary pressures at which this regime is obtained are similar for both PVA and BrijO10 foams, which most likely indicates that collapse is related to a universal mechanism that seems unrelated to the stabilizer interfacial dynamics., Langmuir, 38 (35), ISSN:0743-7463, ISSN:1520-5827
- Published
- 2022
- Full Text
- View/download PDF
5. Growth Mechanism of Polymer Membranes Obtained by H-Bonding Across Immiscible Liquid Interfaces
- Author
-
Thomas Salez, Mathilde Reyssat, Nadège Pantoustier, J Dupré de Baubigny, Cécile Monteux, Patrick Perrin, Sciences et Ingénierie de la Matière Molle (UMR 7615) (SIMM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Gulliver (UMR 7083), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Sciences et Ingénierie de la Matière Molle (SIMM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Gulliver, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
- Subjects
Materials science ,Polymers and Plastics ,Polymers ,Interfaces ,Synthetic membrane ,FOS: Physical sciences ,Capsules ,02 engineering and technology ,Condensed Matter - Soft Condensed Matter ,010402 general chemistry ,01 natural sciences ,Inorganic Chemistry ,Diffusion ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,Materials Chemistry ,Diffusion (business) ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,chemistry.chemical_classification ,Condensed Matter - Materials Science ,Molar mass ,Membranes ,Hydrogen bond ,Organic Chemistry ,Rational design ,Materials Science (cond-mat.mtrl-sci) ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Membrane ,[CHIM.POLY]Chemical Sciences/Polymers ,Diffusion process ,Chemical engineering ,chemistry ,Transport properties ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Soft Condensed Matter (cond-mat.soft) ,0210 nano-technology ,Thickness ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,Porosity - Abstract
Complexation of polymers at liquid interfaces is an emerging technique to produce all-liquid printable and self-healing devices and membranes. It is crucial to control the assembly process, but the mechanisms at play remain unclear. Using two different reflectometric methods, we investigate the spontaneous growth of H-bonded PPO-PMAA (polypropylene oxide-polymetacrylic acid) membranes at a flat liquid-liquid interface. We find that the membrane thickness h grows with time t as h similar to t(1/2), which is reminiscent of a diffusion-limited process. However, counterintuitively, we observe that this process is faster as the PPO molar mass increases. We are able to rationalize these results with a model which considers the diffusion of the PPO chains within the growing membrane. The architecture of the latter is described as a gel-like porous network, with a pore size much smaller than the radius of the diffusing PPO chains, thus inducing entropic barriers that hinder the diffusion process. From the comparison between the experimental data and the result of the model, we extract some key piece of information about the microscopic structure of the membrane. This study opens the route toward the rational design of self-assembled membranes and capsules with optimal properties.
- Published
- 2022
6. Solute effects on dynamics and deformation of emulsion droplets during freezing
- Author
-
Cécile Monteux, Sidhanth Tyagi, Sylvain Deville, laboratoire de synthèse et fonctionnalisation des céramiques (LSFC), SAINT-GOBAIN-Centre National de la Recherche Scientifique (CNRS), Sciences et Ingénierie de la Matière Molle (UMR 7615) (SIMM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Liquides et interfaces (L&I), Institut Lumière Matière [Villeurbanne] (ILM), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon
- Subjects
Length scale ,Materials science ,Pulmonary surfactant ,Chemical physics ,Impurity ,Oil droplet ,Emulsion ,Frost heaving ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Deformation (engineering) ,Microstructure ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
Soft or rigid particles, suspended in a liquid melt, interact with an advancing solidification front in various industrial and natural processes, such as fabrication of particle-reinforced-composites, growth of crystals, cryopreservation, frost heave, and growth of sea ice. The particle dynamics relative to the front determine the microstructure as well as the functional properties of the solidified material. The previous studies have extensively investigated the interaction of foreign objects with a moving solid-liquid interface in pure melts while in most real-life systems, solutes or surface active impurities are almost always present. Here we study experimentally the interaction of spherical oil droplets with a moving planar ice-water interface, while systematically increasing the surfactant concentration in the bulk liquid, using \emph{in situ} cryo-confocal microscopy. We demonstrate that a small amount of surfactant in the bulk liquid can instigate long-range droplet repulsion, extending over a length scale of 40 to 100µm, in contrast to the short-range predicted previously (
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.