7 results on '"Brian MS"'
Search Results
2. Post-meal exercise under ecological conditions improves post-prandial glucose levels but not 24-hour glucose control.
- Author
-
Brian MS, Chaudhry BA, D'Amelio M, Waite EE, Dennett JG, O'Neill DF, and Feairheller DL
- Subjects
- Humans, Female, Young Adult, Sedentary Behavior, Glycemic Control, Postprandial Period physiology, Cross-Over Studies, Blood Glucose metabolism, Walking physiology
- Abstract
We investigated whether post-meal walking (PMW) improved post-prandial glucose and 24h glucose control under free-living conditions among physically inactive young women., Methods: Young women (Age: 20±1years; percent body fat: 28.2 ± 12%; BMI: 23.8 ± 4.2kg·m-1) completed a randomised crossover study to assess if PMW confers benefit. On the PMW day, women completed three bouts of brisk walks, and on the Control day they were instructed to follow normal habitual activities. Continuous glucose monitors captured post-prandial and 24h glucose, and physical activity monitors tracked physical activity throughout the study., Results: PMW walking increased total daily step count (Control = 9,159 ± 2,962 steps vs. PMW = 14,611±3,891 steps, p<0.001) and activity scores (Control=33.87±1.16 METs·h vs. PMW = 36.11±1.58 METs·h, p < 0.001). PMW led to lower 3h average post-prandial glucose (main effect of condition, p=0.011) and 3h post-prandial area under curve glucose responses (main effect of condition, p = 0.027) compared to the control condition. Post hoc analysis revealed the largest decline occurred after dinner (3h average glucose Control = 7.55±1.21 mmol/L vs. PMW = 6.71 ± 0.80mmol/L, p = 0.039), when insulin sensitivity is typically diminished. Despite improvements in post-prandial glucose control, this did not translate to improvements in 24h glucose control (p > 0.05)., Conclusion: Physically inactive and metabolically healthy young women, PMW improves post-prandial glucose but not 24h glucose control.
- Published
- 2024
- Full Text
- View/download PDF
3. Adjusting for muscle strength and body size attenuates sex differences in the exercise pressor reflex in young adults.
- Author
-
Tharpe MA, Linder BA, Babcock MC, Watso JC, Pollin KU, Hutchison ZJ, Barnett AM, Culver MN, Kavazis AN, Brian MS, and Robinson AT
- Subjects
- Humans, Male, Female, Young Adult, Reflex, Blood Pressure physiology, Sympathetic Nervous System, Ischemia, Body Size, Muscle, Skeletal innervation, Heart Rate, Hand Strength physiology, Sex Characteristics
- Abstract
Females typically exhibit lower blood pressure (BP) during exercise than males. However, recent findings indicate that adjusting for maximal strength attenuates sex differences in BP during isometric handgrip (HG) exercise and postexercise ischemia (PEI; metaboreflex isolation). In addition, body size is associated with HG strength but its contribution to sex differences in exercising BP is less appreciated. Therefore, the purpose of this study was to determine whether adjusting for strength and body size would attenuate sex differences in BP during HG and PEI. We obtained beat-to-beat BP in 110 participants (36 females, 74 males) who completed 2 min of isometric HG exercise at 40% of their maximal voluntary contraction followed by 3 min of PEI. In a subset (11 females, 17 males), we collected muscle sympathetic nerve activity (MSNA). Statistical analyses included independent t tests and mixed models (sex × time) with covariate adjustment for 40% HG force, height
2 , and body surface area. Females exhibited a lower absolute 40% HG force than male participants ( Ps < 0.001). Females exhibited lower Δsystolic, Δdiastolic, and Δmean BPs during HG and PEI than males (e.g., PEI, Δsystolic BP, 15 ± 11 vs. 23 ± 14 mmHg; P = 0.004). After covariate adjustment, sex differences in BP responses were attenuated. There were no sex differences in MSNA. In a smaller strength-matched cohort, there was no sex × time interactions for BP responses (e.g., PEI systolic BP, P = 0.539; diastolic BP, P = 0.758). Our data indicate that sex differences in exercising BP responses are attenuated after adjusting for muscle strength and body size. NEW & NOTEWORTHY When compared with young males, females typically exhibit lower blood pressure (BP) during exercise. Adjusting for maximal strength attenuates sex differences in BP during isometric handgrip (HG) exercise and postexercise ischemia (PEI), but the contribution of body size is unknown. Novel findings include adjustments for muscle strength and body size attenuate sex differences in BP reactivity during exercise and PEI, and sex differences in body size contribute to HG strength differences.- Published
- 2023
- Full Text
- View/download PDF
4. Impact of a family history of hypertension and physical activity on left ventricular mass.
- Author
-
Callaghan KN, Hosick PA, Brian MS, and Matthews EL
- Subjects
- Humans, Young Adult, Adult, Male, Female, Hypertension etiology, Exercise
- Abstract
Background: A positive family history of hypertension (FHH) (+FHH) is associated with elevated left ventricular mass (LVM). Regular physical activity (PA) may eliminate differences in LVM between +FHH and negative family history of hypertension (-FHH) adults. The aim of this study was to determine if a +FHH is associated with a greater LVM compared to a -FHH group within a sample of young, mostly active healthy adults with and without statistically controlling for PA., Methods: Healthy young (18-32 y) participants self-reported FHH status and habitual moderate and vigorous PA frequency. Participants then underwent an echocardiogram., Results: Of the 61 participants, 32 (M=11, W=21; non-active=8) reported -FHH and the remaining 29 (M=13, W=16; non-active=2) reported a +FHH. Mann-Whitney tests found the +FHH group had greater LVM (-FHH 129.5±41.8, +FHH 155.2±42.6 g, P=0.015) and LVM/body surface area (BSA) (-FHH 73.5±17.4, +FHH 88.4±17.3 g/m
2 , P=0.004). Separate ANCOVA models accounting for moderate and vigorous PA found that FHH status independently predicted LVM/BSA and PA frequencies were significant modifiers (ANCOVA controlling moderate PA: FHH status P=0.004, partial η2 =0.133; moderate PA P=0.020, partial η2 =0.089), (ANCOVA controlling vigorous PA: FHH status P=0.004, partial η2 =0.132; vigorous PA P=0.007, partial η2 =0.117)., Conclusions: This analysis suggests that physically active young adults with a +FHH have elevated LVM compared to their -FHH counterparts. This finding is independent of their habitual moderate and vigorous physical activity frequencies.- Published
- 2023
- Full Text
- View/download PDF
5. Excess adiposity contributes to higher ambulatory central blood pressure and arterial stiffness in physically inactive young adults.
- Author
-
Brian MS, Blier AR, Alward BM, Waite EE, D'Amelio MP, Shaw MA, O'Neill DF, and Chaidarun SS
- Subjects
- Male, Humans, Female, Young Adult, Blood Pressure physiology, Adiposity, Sedentary Behavior, Obesity, Vascular Stiffness physiology, Hypertension
- Abstract
Background: It remains unknown if physical inactivity and excess adiposity increases 24-h central blood pressure and arterial stiffness in young adults. This study examined 24-h central blood pressure and indirect measures of arterial stiffness (e.g., central pulse pressure) in physically inactive young adults with and without excess adiposity., Methods: Body fat and ambulatory 24-h blood pressure were measured in 31 young adults (men: 22±4 years, N.=15; women: 22±5 years, N=16). Multi-frequency bioelectrical impedance measured body fat. Normal adiposity was defined as <20% body fat in men and <32% body fat in women, whereas excess adiposity was defined as ≥20% and ≥32% in men and women, respectively. Ambulatory 24-h central blood pressure was calculated based on brachial blood pressure and volumetric displacement waveforms., Results: By design, the normal adiposity group had a lower body fat percentage (men: 15.5±4.6%; women: 20.8±2.5%) compared to the physically inactive excess adiposity group (men: 29.8±5.4%; women: 34.3±7.5%). Men and women with excess adiposity group had elevated central blood pressure (central systolic, P<0.05 vs. normal adiposity groups). Central pulse pressure was elevated in the excess adiposity group (men: 45±5 mmHg; women: 41±9 mmHg) compared to normal adiposity groups (men: 36±4 mmHg; women: 32±3 mmHg, P<0.05 for both), while other arterial stiffness (augmentation index and ambulatory arterial stiffness index) measures trended toward significance only in men with excess adiposity., Conclusions: Physically inactive men and women with excess adiposity have increased 24h central blood pressure and pulse pressure compared to physically inactive young adults with normal adiposity.
- Published
- 2023
- Full Text
- View/download PDF
6. The Relationship between Sleep Duration and Metabolic Syndrome Severity Scores in Emerging Adults.
- Author
-
Chaudhry BA, Brian MS, and Morrell JS
- Subjects
- Male, Female, Young Adult, Humans, Sleep Duration, Cross-Sectional Studies, Sleep physiology, Smoking epidemiology, Risk Factors, Metabolic Syndrome epidemiology
- Abstract
Background: Research suggests sleep duration can influence metabolic systems including glucose homeostasis, blood pressure, hormone regulation, nervous system activity, and total energy expenditure (TEE), all of which are related to cardiometabolic disease risk, even in young adults. The purpose of this study was to examine the relationship between sleep duration and metabolic syndrome severity scores (MSSS) in a sample of emerging adults (18-24 y/o)., Methods: Data were collected between 2012 and 2021 from the College Health and Nutrition Assessment Survey, an ongoing, cross-sectional study conducted at a midsized northeastern university. Anthropometric, biochemical, and clinical measures were obtained following an overnight fast and used to assess the prevalence of metabolic syndrome (MetS). MetS severity scores (MSSS) were calculated using race- and sex-specific formulas. Sleep duration was calculated from the difference in self-reported bedtime and wake time acquired through an online survey. ANCOVA was used to examine the relationship between sleep duration and MetS severity score while adjusting for covariates (age, sex, BMI, physical activity level, smoking status, alcohol consumption, and academic major)., Results: In the final sample ( n = 3816), MetS (≥3 criteria) was present in 3.3% of students, while 15.4% of students presented with ≥2 MetS criteria. Mean MSSS was -0.65 ± 0.56, and the reported sleep duration was 8.2 ± 1.3 h/day. MSSS was higher among low sleepers (<7 h/day) and long sleepers (>9 h/day) compared to the reference sleepers (7-8 h/day) (-0.61 ± 0.02 and -0.63 ± 0.01 vs. -0.7 ± 0.02, respectively, p < 0.01)., Conclusions: Our findings suggest short (<7 h/day) and long (>9 h/day) sleep durations raise the risk of MetS in a sample of emerging adults. Further research is needed to elucidate the impact of improving sleep habits on future disease risk.
- Published
- 2023
- Full Text
- View/download PDF
7. The effects of a respiratory training mask on steady-state oxygen consumption at rest and during exercise.
- Author
-
Brian MS, Carmichael RD, Berube FR, Blake DT, Stuercke HR, and Matthews EL
- Abstract
No studies have directly measured ventilatory and metabolic responses while wearing a respiratory training mask (RTM) at rest and during exercise. Eleven aerobically fit adults (age: 21 ± 1 years) completed a randomized cross-over study while wearing an RTM or control mask during cycling at 50% Wmax. An RTM was retrofitted with a gas collection tube and set to the manufacturer's "altitude resistance" setting of 6,000 ft (1,800 m). Metabolic gas analysis, ratings of perceived exertion, and oxygen saturation (SpO2) were measured during rest and cycling exercise. The RTM did not affect metabolic, ventilation, and SpO2 at rest compared to the control mask (all, effect of condition: P > 0.05). During exercise, the RTM blunted respiratory rate and minute ventilation (effect of condition: P < 0.05) compared to control. Similar increases in VO2 and VCO2 were observed in both conditions (both, effect of condition: P > 0.05). However, the RTM led to decreased fractional expired O2 and increased fractional expired CO2 (effect of condition: P < 0.05) compared to the control mask. In addition, the RTM decreased SpO2 and increased RPE (both, effect of condition: P < 0.05) during exercise. Despite limited influence on ventilation and metabolism at rest, the RTM reduces ventilation and disrupts gas concentrations during exercise leading to modest hypoxemia.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.