9 results on '"Borowska D"'
Search Results
2. Comparative Analysis of Different Inbred Chicken Lines Highlights How a Hereditary Inflammatory State Affects Susceptibility to Avian Influenza Virus
- Author
-
Bryson, K.J., Sives, S., Lee, H.-M., Borowska, D., Smith, J., Digard, P., and Vervelde, L.
- Abstract
Evidence suggests that susceptibility to avian influenza A virus in chickens is influenced by host genetics, but the mechanisms are poorly understood. A previous study demonstrated that inbred line 0 chickens are more resistant to low-pathogenicity avian influenza (LPAI) infection than line CB.12 birds based on viral shedding, but the resistance was not associated with higher AIV-specific IFNγ responses or antibody titres. In this study, we investigated the proportions and cytotoxic capacity of T-cell subpopulations in the spleen and the early immune responses in the respiratory tract, analysing the innate immune transcriptome of lung-derived macrophages following in vitro stimulation with LPAI H7N1 or the TLR7 agonist R848. The more susceptible C.B12 line had a higher proportion of CD8αβ+γδ and CD4+CD8αα+αVβ1T cells, and a significantly higher proportion of the CD8αβ+γδ and CD8αβ+αVβ1T cells expressed CD107a, a surrogate marker of degranulation. Lung macrophages isolated from line C.B12 birds expressed higher levels of the negative regulator genesTRIM29andIL17REL,whereas macrophages from line 0 birds expressed higher levels of antiviral genes includingIRF10andIRG1. After stimulation with R848, the macrophages from line 0 birds mounted a higher response compared to line C.B12 cells. Together, the higher proportion of unconventional T cells, the higher level of cytotoxic cell degranulation ex vivo and post-stimulation and the lower levels of antiviral gene expression suggest a potential role of immunopathology in mediating susceptibility in C.B12 birds.
- Published
- 2023
3. FdeC expression regulates motility and adhesion of the avian pathogenic Escherichia coli strain IMT5155.
- Author
-
Aleksandrowicz A, Kjærup RB, Grzymajło K, Martinez FG, Muñoz J, Borowska D, Sives S, Vervelde L, Dalgaard TS, Kingsley RA, and Kolenda R
- Subjects
- Animals, Gene Expression Regulation, Bacterial, Escherichia coli physiology, Escherichia coli genetics, Escherichia coli Proteins genetics, Escherichia coli Proteins metabolism, Poultry Diseases microbiology, Escherichia coli Infections veterinary, Escherichia coli Infections microbiology, Bacterial Adhesion, Chickens, Adhesins, Escherichia coli genetics, Adhesins, Escherichia coli metabolism
- Abstract
Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Chicken intestinal organoids: a novel method to measure the mode of action of feed additives.
- Author
-
Mitchell J, Sutton K, Elango JN, Borowska D, Perry F, Lahaye L, Santin E, Arsenault RJ, and Vervelde L
- Subjects
- Animals, Immunity, Innate, Oils, Volatile pharmacology, Salmonella Infections, Animal immunology, Salmonella Infections, Animal microbiology, Poultry Diseases microbiology, Poultry Diseases immunology, Intestinal Mucosa microbiology, Intestinal Mucosa immunology, Intestinal Mucosa drug effects, Organoids, Chickens, Animal Feed, Intestines immunology, Intestines drug effects, Intestines microbiology
- Abstract
There is a rapidly growing interest in how the avian intestine is affected by dietary components and feed additives. The paucity of physiologically relevant models has limited research in this field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The development of complex 3D intestinal organoids or "mini-guts" has created ample opportunities for poultry research in this field. A major advantage of the floating chicken intestinal organoids is the combination of a complex cell system with an easily accessible apical-out orientation grown in a simple culture medium without an extracellular matrix. The objective was to investigate the impact of a commercial proprietary blend of organic acids and essential oils (OA+EO) on the innate immune responses and kinome of chicken intestinal organoids in a Salmonella challenge model. To mimic the in vivo prolonged exposure of the intestine to the product, the intestinal organoids were treated for 2 days with 0.5 or 0.25 mg/mL OA+EO and either uninfected or infected with Salmonella and bacterial load in the organoids was quantified at 3 hours post infection. The bacteria were also treated with OA+EO for 1 day prior to challenge of the organoids to mimic intestinal exposure. The treatment of the organoids with OA+EO resulted in a significant decrease in the bacterial load compared to untreated infected organoids. The expression of 88 innate immune genes was investigated using a high throughput qPCR array, measuring the expression of 88 innate immune genes. Salmonella invasion of the untreated intestinal organoids resulted in a significant increase in the expression of inflammatory cytokine and chemokines as well as genes involved in intracellular signaling. In contrast, when the organoids were treated with OA+EO and challenged with Salmonella , the inflammatory responses were significantly downregulated. The kinome array data suggested decreased phosphorylation elicited by the OA+EO with Salmonella in agreement with the gene expression data sets. This study demonstrates that the in vitro chicken intestinal organoids are a new tool to measure the effect of the feed additives in a bacterial challenge model by measuring innate immune and protein kinases responses., Competing Interests: Author ES and LL were employed by the company Jefo Nutrition Inc. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The authors declare that this study received funding from Jefo Nutrition Inc. .Jefo Nutrition Inc. provided research support and played role in the decision to publish and study design, but not in the data collection and analysis. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision., (Copyright © 2024 Mitchell, Sutton, Elango, Borowska, Perry, Lahaye, Santin, Arsenault and Vervelde.)
- Published
- 2024
- Full Text
- View/download PDF
5. Disentangling the innate immune responses of intestinal epithelial cells and lamina propria cells to Salmonella Typhimurium infection in chickens.
- Author
-
Sutton K, Nash T, Sives S, Borowska D, Mitchell J, Vohra P, Stevens MP, and Vervelde L
- Abstract
Salmonella enterica serovar Typhimurium (STm) is a major foodborne pathogen and poultry are a key reservoir of human infections. To understand the host responses to early stages of Salmonella infection in poultry, we infected 2D and 3D enteroids, the latter of which contains leukocytes, neurons, and mesenchymal cells that are characteristic of the lamina propria. We infected these enteroids with wild-type (WT STm), a non-invasive mutant lacking the prgH gene (Δ prgH STm), or treated them with STm lipopolysaccharide (LPS) and analyzed the expression of innate immune related genes by qPCR at 4 and 8 h. The localization of the tight junction protein, ZO-1, expression was disrupted in WT STm infected enteroids but not Δ prgH STm or LPS treated enteroids, suggesting a loss of epithelial barrier integrity. The innate immune response to LPS was more pronounced in 2D enteroids compared to 3D enteroids and by 8 hpi, the response in 3D enteroids was almost negligible. However, when STm adhered to or invaded the enteroids, both 2D and 3D enteroids exhibited an upregulation of inflammatory responses. The presence of lamina propria cells in 3D enteroids resulted in the unique expression of genes associated with immune functions involved in regulating inflammation. Moreover, 2D and 3D enteroids showed temporal differences in response to bacterial invasion or adherence. At 8 hpi, innate responses in 3D but not 2D enteroids continued to increase after infection with WT STm, whereas the responses to the non-invasive strain decreased at 8 hpi in both 2D and 3D enteroids. In conclusion, STm infection of chicken enteroids recapitulated several observations from in vivo studies of Salmonella -infected chickens, including altered epithelial barrier integrity based on ZO-1 expression and inflammatory responses. Our findings provide evidence that Salmonella -infected enteroids serve as effective models for investigating host-pathogen interactions and exploring the molecular mechanisms of microbial virulence although the 3D model mimics the host more accurately due to the presence of a lamina propria., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Sutton, Nash, Sives, Borowska, Mitchell, Vohra, Stevens and Vervelde.)
- Published
- 2023
- Full Text
- View/download PDF
6. Corrigendum: The molecular basis of differential host responses to avian influenza viruses in avian species with differing susceptibility.
- Author
-
Morris KM, Mishra A, Raut AA, Gaunt ER, Borowska D, Kuo RI, Wang B, Vijayakumar P, Chingtham S, Dutta R, Baillie K, Digard P, Vervelde L, Burt DW, and Smith J
- Abstract
[This corrects the article DOI: 10.3389/fcimb.2023.1067993.]., (Copyright © 2023 Morris, Mishra, Raut, Gaunt, Borowska, Kuo, Wang, Vijayakumar, Chingtham, Dutta, Baillie, Digard, Vervelde, Burt and Smith.)
- Published
- 2023
- Full Text
- View/download PDF
7. The molecular basis of differential host responses to avian influenza viruses in avian species with differing susceptibility.
- Author
-
Morris KM, Mishra A, Raut AA, Gaunt ER, Borowska D, Kuo RI, Wang B, Vijayakumar P, Chingtham S, Dutta R, Baillie K, Digard P, Vervelde L, Burt DW, and Smith J
- Subjects
- Animals, Ducks, Chickens, Influenza in Birds, Influenza A Virus, H5N1 Subtype, Influenza A Virus, H9N2 Subtype
- Abstract
Introduction: Highly pathogenic avian influenza (HPAI) viruses, such as H5N1, continue to pose a serious threat to animal agriculture, wildlife and to public health. Controlling and mitigating this disease in domestic birds requires a better understanding of what makes some species highly susceptible (such as turkey and chicken) while others are highly resistant (such as pigeon and goose). Susceptibility to H5N1 varies both with species and strain; for example, species that are tolerant of most H5N1 strains, such as crows and ducks, have shown high mortality to emerging strains in recent years. Therefore, in this study we aimed to examine and compare the response of these six species, to low pathogenic avian influenza (H9N2) and two strains of H5N1 with differing virulence (clade 2.2 and clade 2.3.2.1) to determine how susceptible and tolerant species respond to HPAI challenge., Methods: Birds were challenged in infection trials and samples (brain, ileum and lung) were collected at three time points post infection. The transcriptomic response of birds was examined using a comparative approach, revealing several important discoveries., Results: We found that susceptible birds had high viral loads and strong neuro-inflammatory response in the brain, which may explain the neurological symptoms and high mortality rates exhibited following H5N1 infection. We discovered differential regulation of genes associated with nerve function in the lung and ileum, with stronger differential regulation in resistant species. This has intriguing implications for the transmission of the virus to the central nervous system (CNS) and may also indicate neuro-immune involvement at the mucosal surfaces. Additionally, we identified delayed timing of the immune response in ducks and crows following infection with the more deadly H5N1 strain, which may account for the higher mortality in these species caused by this strain. Lastly, we identified candidate genes with potential roles in susceptibility/resistance which provide excellent targets for future research., Discussion: This study has helped elucidate the responses underlying susceptibility to H5N1 influenza in avian species, which will be critical in developing sustainable strategies for future control of HPAI in domestic poultry., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Morris, Mishra, Raut, Gaunt, Borowska, Kuo, Wang, Vijayakumar, Chingtham, Dutta, Baillie, Digard, Vervelde, Burt and Smith.)
- Published
- 2023
- Full Text
- View/download PDF
8. Comparative Analysis of Different Inbred Chicken Lines Highlights How a Hereditary Inflammatory State Affects Susceptibility to Avian Influenza Virus.
- Author
-
Bryson KJ, Sives S, Lee HM, Borowska D, Smith J, Digard P, and Vervelde L
- Subjects
- Animals, Chickens, Antiviral Agents, Influenza in Birds, Influenza A Virus, H7N1 Subtype, Influenza A virus
- Abstract
Evidence suggests that susceptibility to avian influenza A virus in chickens is influenced by host genetics, but the mechanisms are poorly understood. A previous study demonstrated that inbred line 0 chickens are more resistant to low-pathogenicity avian influenza (LPAI) infection than line CB.12 birds based on viral shedding, but the resistance was not associated with higher AIV-specific IFNγ responses or antibody titres. In this study, we investigated the proportions and cytotoxic capacity of T-cell subpopulations in the spleen and the early immune responses in the respiratory tract, analysing the innate immune transcriptome of lung-derived macrophages following in vitro stimulation with LPAI H7N1 or the TLR7 agonist R848. The more susceptible C.B12 line had a higher proportion of CD8αβ
+ γδ and CD4+ CD8αα+ αVβ1 T cells, and a significantly higher proportion of the CD8αβ+ γδ and CD8αβ+ αVβ1 T cells expressed CD107a, a surrogate marker of degranulation. Lung macrophages isolated from line C.B12 birds expressed higher levels of the negative regulator genes TRIM29 and IL17REL, whereas macrophages from line 0 birds expressed higher levels of antiviral genes including IRF10 and IRG1 . After stimulation with R848, the macrophages from line 0 birds mounted a higher response compared to line C.B12 cells. Together, the higher proportion of unconventional T cells, the higher level of cytotoxic cell degranulation ex vivo and post-stimulation and the lower levels of antiviral gene expression suggest a potential role of immunopathology in mediating susceptibility in C.B12 birds.- Published
- 2023
- Full Text
- View/download PDF
9. Chicken CSF2 and IL-4-, and CSF2-dependent bone marrow cultures differentiate into macrophages over time.
- Author
-
Borowska D, Sives S, Vervelde L, and Sutton KM
- Subjects
- Animals, Granulocyte-Macrophage Colony-Stimulating Factor metabolism, Bone Marrow metabolism, Dendritic Cells metabolism, Macrophages metabolism, Mammals metabolism, Chickens metabolism, Interleukin-4 metabolism
- Abstract
Chicken bone marrow-derived macrophages (BMMΦ) and dendritic cells (BMDC) are utilized as models to study the mononuclear phagocytic system (MPS). A widely used method to generate macrophages and DC in vitro is to culture bone marrow cells in the presence of colony-stimulating factor-1 (CSF1) to differentiate BMMΦ and granulocyte-macrophage-CSF (GM-CSF, CSF2) and interleukin-4 (IL-4) to differentiate BMDC, while CSF2 alone can lead to the development of granulocyte-macrophage-CSF-derived DC (GMDC). However, in chickens, the MPS cell lineages and their functions represented by these cultures are poorly understood. Here, we decipher the phenotypical, functional and transcriptional differences between chicken BMMΦ and BMDC along with examining differences in DC cultures grown in the absence of IL-4 on days 2, 4, 6 and 8 of culture. BMMΦ cultures develop into a morphologically homogenous cell population in contrast to the BMDC and GMDC cultures, which produce morphologically heterogeneous cell cultures. At a phenotypical level, all cultures contained similar cell percentages and expression levels of MHCII, CD11c and CSF1R -transgene, whilst MRC1L-B expression decreased over time in BMMΦ. All cultures were efficiently able to uptake 0.5 µm beads, but poorly phagocytosed 1 µm beads. Little difference was observed in the kinetics of phagosomal acidification across the cultures on each day of analysis. Temporal transcriptomic analysis indicated that all cultures expressed high levels of CSF3R , MERTK , SEPP1 , SPI1 and TLR4 , genes associated with macrophages in mammals. In contrast, low levels of FLT3 , XCR1 and CAMD1 , genes associated with DC, were expressed at day 2 in BMDC and GMDC after which expression levels decreased. Collectively, chicken CSF2 + IL-4- and CSF2-dependent BM cultures represent cells of the macrophage lineage rather than inducing conventional DC., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Borowska, Sives, Vervelde and Sutton.)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.