9 results on '"Bolz, S."'
Search Results
2. Biogenesis and reformation of synaptic vesicles.
- Author
-
Bolz S and Haucke V
- Abstract
Communication within the nervous system relies on the calcium-triggered release of neurotransmitter molecules by exocytosis of synaptic vesicles (SVs) at defined active zone release sites. While decades of research have provided detailed insight into the molecular machinery for SV fusion, much less is known about the mechanisms that form functional SVs during the development of synapses and that control local SV reformation following exocytosis in the mature nervous system. Here we review the current state of knowledge in the field, focusing on the pathways implicated in the formation and axonal transport of SV precursor organelles and the mechanisms involved in the local reformation of SVs within nerve terminals in mature neurons. We discuss open questions and outline perspectives for future research., (© 2024 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.)
- Published
- 2024
- Full Text
- View/download PDF
3. Phosphoinositide detection at synapses of fixed murine hippocampal neurons.
- Author
-
Bolz S, Kaempf N, Muehlbauer M, Löwe D, and Haucke V
- Subjects
- Animals, Mice, Phosphatidylinositols metabolism, Phosphatidylinositols analysis, Phosphatidylinositol 4,5-Diphosphate metabolism, Staining and Labeling methods, Hippocampus cytology, Hippocampus metabolism, Synapses metabolism, Neurons metabolism, Neurons cytology
- Abstract
The minor phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P
2 ] is crucial for neurotransmission and has been implicated in Parkinson's disease. Here, we present a staining protocol for the analysis of activity-dependent changes of PI(4,5)P2 at synapses. We describe steps for stimulating and fixing murine hippocampal neurons, staining with probes for PI(4,5)P2 and a synaptic marker, and analysis by high-resolution microscopy. Our approach gives insights into local PI(4,5)P2 synthesis and turnover at synapses and can be extended to phosphoinositide lipids other than PI(4,5)P2 . For complete details on the use and execution of this protocol, please refer to Bolz et al.1 ., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
4. Sustained Extracellular Electrical Stimulation Modulates the Permeability of Gap Junctions in rd1 Mouse Retina with Photoreceptor Degeneration.
- Author
-
Stürmer S, Bolz S, Zrenner E, Ueffing M, and Haq W
- Subjects
- Animals, Mice, Retina pathology, Gap Junctions, Electric Stimulation, Permeability, Retinal Degeneration therapy, Retinal Degeneration pathology
- Abstract
Neurons build vast gap junction-coupled networks (GJ-nets) that are permeable to ions or small molecules, enabling lateral signaling. Herein, we investigate (1) the effect of blinding diseases on GJ-nets in mouse retinas and (2) the impact of electrical stimulation on GJ permeability. GJ permeability was traced in the acute retinal explants of blind retinal degeneration 1 ( rd1 ) mice using the GJ tracer neurobiotin. The tracer was introduced via the edge cut method into the GJ-net, and its spread was visualized in histological preparations (fluorescent tagged) using microscopy. Sustained stimulation was applied to modulate GJ permeability using a single large electrode. Our findings are: (1) The blind rd1 retinas displayed extensive intercellular coupling via open GJs. Three GJ-nets were identified: horizontal, amacrine, and ganglion cell networks. (2) Sustained stimulation significantly diminished the tracer spread through the GJs in all the cell layers, as occurs with pharmaceutical inhibition with carbenoxolone. We concluded that the GJ-nets of rd1 retinas remain coupled and functional after blinding disease and that their permeability is regulatable by sustained stimulation. These findings are essential for understanding molecular signaling in diseases over coupled networks and therapeutic approaches using electrical implants, such as eliciting visual sensations or suppressing cortical seizures.
- Published
- 2024
- Full Text
- View/download PDF
5. Interactome Analysis Reveals a Link of the Novel ALMS1-CEP70 Complex to Centrosomal Clusters.
- Author
-
Woerz F, Hoffmann F, Antony S, Bolz S, Jarboui MA, Junger K, Klose F, Stehle IF, Boldt K, Ueffing M, and Beyer T
- Subjects
- Humans, Cell Cycle Proteins genetics, Microtubule-Associated Proteins metabolism, Obesity, Tubulin, Alstrom Syndrome genetics, Alstrom Syndrome metabolism, Diabetes Mellitus, Type 2
- Abstract
Alström syndrome (ALMS) is a very rare autosomal-recessive disorder, causing a broad range of clinical defects most notably retinal degeneration, type 2 diabetes, and truncal obesity. The ALMS1 gene encodes a complex and huge ∼0.5 MDa protein, which has hampered analysis in the past. The ALMS1 protein is localized to the centrioles and the basal body of cilia and is involved in signaling processes, for example, TGF-β signaling. However, the exact molecular function of ALMS1 at the basal body remains elusive and controversial. We recently demonstrated that protein complex analysis utilizing endogenously tagged cells provides an excellent tool to investigate protein interactions of ciliary proteins. Here, CRISPR/Cas9-mediated endogenously tagged ALMS1 cells were used for affinity-based protein complex analysis. Centrosomal and microtubule-associated proteins were identified, which are potential regulators of ALMS1 function, such as the centrosomal protein 70 kDa (CEP70). Candidate proteins were further investigated in ALMS1-deficient hTERT-RPE1 cells. Loss of ALMS1 led to shortened cilia with no change in structural protein localization, for example, acetylated and ɣ-tubulin, Centrin-3, or the novel interactor CEP70. Conversely, reduction of CEP70 resulted in decreased ALMS1 at the ciliary basal body. Complex analysis of CEP70 revealed domain-specific ALMS1 interaction involving the TPR-containing C-terminal (TRP-CT) fragment of CEP70. In addition to ALMS1, several ciliary proteins, including CEP135, were found to specifically bind to the TPR-CT domain. Data are available via ProteomeXchange with the identifier PXD046401. Protein interactors identified in this study provide candidate lists that help to understand ALMS1 and CEP70 function in cilia-related protein modification, cell death, and disease-related mechanisms., Competing Interests: Conflict of interest The authors declare no conflict of interest. The funders were not involved in the analyses or interpretation of data; in the writing of the manuscript or in the decision to publish the results., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. Synaptotagmin 1-triggered lipid signaling facilitates coupling of exo- and endocytosis.
- Author
-
Bolz S, Kaempf N, Puchkov D, Krauss M, Russo G, Soykan T, Schmied C, Lehmann M, Müller R, Schultz C, Perrais D, Maritzen T, and Haucke V
- Published
- 2023
- Full Text
- View/download PDF
7. Paralog-specific TTC30 regulation of Sonic hedgehog signaling.
- Author
-
Hoffmann F, Bolz S, Junger K, Klose F, Stehle IF, Ueffing M, Boldt K, and Beyer T
- Abstract
The intraflagellar transport (IFT) machinery is essential for cilia assembly, maintenance, and trans-localization of signaling proteins. The IFT machinery consists of two large multiprotein complexes, one of which is the IFT-B. TTC30A and TTC30B are integral components of this complex and were previously shown to have redundant functions in the context of IFT, preventing the disruption of IFT-B and, thus, having a severe ciliogenesis defect upon loss of one paralog. In this study, we re-analyzed the paralog-specific protein complexes and discovered a potential involvement of TTC30A or TTC30B in ciliary signaling. Specifically, we investigated a TTC30A-specific interaction with protein kinase A catalytic subunit α, a negative regulator of Sonic hedgehog (Shh) signaling. Defects in this ciliary signaling pathway are often correlated to synpolydactyly, which, intriguingly, is also linked to a rare TTC30 variant. For an in-depth analysis of this unique interaction and the influence on Shh, TTC30A or B single- and double-knockout hTERT-RPE1 were employed, as well as rescue cells harboring wildtype TTC30 or the corresponding mutation. We could show that mutant TTC30A inhibits the ciliary localization of Smoothened. This observed effect is independent of Patched1 but associated with a distinct phosphorylated PKA substrate accumulation upon treatment with forskolin. This rather prominent phenotype was attenuated in mutant TTC30B. Mass spectrometry analysis of wildtype versus mutated TTC30A or TTC30B uncovered differences in protein complex patterns and identified an impaired TTC30A-IFT57 interaction as the possible link leading to synpolydactyly. We could observe no impact on cilia assembly, leading to the hypothesis that a slight decrease in IFT-B binding can be compensated, but mild phenotypes, like synpolydactyly, can be induced by subtle signaling changes. Our systematic approach revealed the paralog-specific influence of TTC30A KO and mutated TTC30A on the activity of PRKACA and the uptake of Smoothened into the cilium, resulting in a downregulation of Shh. This downregulation, combined with interactome alterations, suggests a potential mechanism of how mutant TTC30A is linked to synpolydactyly., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Hoffmann, Bolz, Junger, Klose, Stehle, Ueffing, Boldt and Beyer.)
- Published
- 2023
- Full Text
- View/download PDF
8. Preventing occludin tight-junction disruption via inhibition of microRNA-193b-5p attenuates viral load and influenza-induced lung injury.
- Author
-
Vaswani CM, Varkouhi AK, Gupta S, Ektesabi AM, Tsoporis JN, Yousef S, Plant PJ, da Silva AL, Cen Y, Tseng YC, Batah SS, Fabro AT, Advani SL, Advani A, Leong-Poi H, Marshall JC, Garcia CC, Rocco PRM, Albaiceta GM, Sebastian-Bolz S, Watts TH, Moraes TJ, Capelozzi VL, and Dos Santos CC
- Subjects
- Humans, Animals, Mice, Occludin genetics, Occludin metabolism, Tight Junctions metabolism, Viral Load, Mice, Inbred C57BL, Antiviral Agents, Influenza, Human complications, Influenza, Human genetics, Influenza, Human metabolism, MicroRNAs genetics, MicroRNAs metabolism, Lung Injury metabolism, Influenza A Virus, H1N1 Subtype genetics
- Abstract
Virus-induced lung injury is associated with loss of pulmonary epithelial-endothelial tight junction integrity. While the alveolar-capillary membrane may be an indirect target of injury, viruses may interact directly and/or indirectly with miRs to augment their replication potential and evade the host antiviral defense system. Here, we expose how the influenza virus (H1N1) capitalizes on host-derived interferon-induced, microRNA (miR)-193b-5p to target occludin and compromise antiviral defenses. Lung biopsies from patients infected with H1N1 revealed increased miR-193b-5p levels, marked reduction in occludin protein, and disruption of the alveolar-capillary barrier. In C57BL/6 mice, the expression of miR-193b-5p increased, and occludin decreased, 5-6 days post-infection with influenza (PR8). Inhibition of miR-193b-5p in primary human bronchial, pulmonary microvascular, and nasal epithelial cells enhanced antiviral responses. miR-193b-deficient mice were resistant to PR8. Knockdown of occludin, both in vitro and in vivo, and overexpression of miR-193b-5p reconstituted susceptibility to viral infection. miR-193b-5p inhibitor mitigated loss of occludin, improved viral clearance, reduced lung edema, and augmented survival in infected mice. Our results elucidate how the innate immune system may be exploited by the influenza virus and how strategies that prevent loss of occludin and preserve tight junction function may limit susceptibility to virus-induced lung injury., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
9. TTC30A and TTC30B Redundancy Protects IFT Complex B Integrity and Its Pivotal Role in Ciliogenesis.
- Author
-
Hoffmann F, Bolz S, Junger K, Klose F, Schubert T, Woerz F, Boldt K, Ueffing M, and Beyer T
- Subjects
- Biological Transport, Humans, Proteins metabolism, Cilia genetics, Cilia metabolism, Ciliopathies genetics, Ciliopathies metabolism
- Abstract
Intraflagellar transport (IFT) is a microtubule-based system that supports the assembly and maintenance of cilia. The dysfunction of IFT leads to ciliopathies of variable severity. Two of the IFT-B components are the paralogue proteins TTC30A and TTC30B. To investigate whether these proteins constitute redundant functions, CRISPR/Cas9 was used to generate single TTC30A or B and double-knockout hTERT-RPE1 cells. Ciliogenesis assays showed the redundancy of both proteins while the polyglutamylation of cilia was affected in single knockouts. The localization of other IFT components was not affected by the depletion of a single paralogue. A loss of both proteins led to a severe ciliogenesis defect, resulting in no cilia formation, which was rescued by TTC30A or B. The redundancy can be explained by the highly similar interaction patterns of the paralogues; both equally interact with the IFT-B machinery. Our study demonstrates that a loss of one TTC30 paralogue can mostly be compensated by the other, thus preventing severe ciliary defects. However, cells assemble shorter cilia, which are potentially limited in their function, especially because of impaired polyglutamylation. A complete loss of both proteins leads to a deficit in IFT complex B integrity followed by disrupted IFT and subsequently no cilia formation.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.