1. Root functional traits are important predictors for plant resource acquisition strategies in subtropical forests.
- Author
-
Yu G, Wang Y, Li A, Wang S, Chen J, Mo J, and Zheng M
- Subjects
- China, Acacia physiology, Phosphorus, Nitrogen metabolism, Trees physiology, Plant Leaves physiology, Plant Roots physiology, Forests, Eucalyptus physiology
- Abstract
Intercorrelated aboveground traits associated with costs and plant growth have been widely used to predict vegetation in response to environmental changes. However, whether underground traits exhibit consistent responses remains unclear, particularly in N-rich subtropical forests. Responses of foliar and root morphological and physiological traits of tree and herb species after 8-year N, P, and combined N and P treatments (50 kg N, P, N and P ha
-1 year-1 ) were examined in leguminous Acacia auriculiformis (AA) and nonleguminous Eucalyptus urophylla (EU) forests in southern China. N addition did not significantly impact all leaf and root traits except root N concentration per root length. Root traits responded to P addition more than leaf traits in trees; however, both traits responded similarly to P addition in herbs. Tree species deviated from the expected leaf economics spectrum; however, all species aligned with the root economics spectrum. The P and combined N and P treatments significantly altered the position of principal components analysis of root functional traits for herb species compared to the control. However, these changes did not reflect a classic shift in nutrient acquisition strategy within the root economics spectrum. As leguminous species experienced greater P limitation, AA responded more to P addition than EU; their understories indicated no significant differences. This study reveals how plant aboveground and underground traits adapt to nutrient-rich environments. These findings highlight the importance of incorporating plant underground traits, which show significant and specific responses to nutrient additions, into Earth system models for accurately predicting plant responses to global change., (© 2025 The Ecological Society of America.)- Published
- 2025
- Full Text
- View/download PDF