1. Twin-width VI: the lens of contraction sequences
- Author
-
Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL), Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE40-0025,ASSK,Algorithmes avec décomposition moins connu: graphes et matroids(2018), ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019), ANR-21-CE48-0014,TWIN-WIDTH,Twin-width: théorie et applications(2021), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), École normale supérieure - Lyon (ENS Lyon), Bonnet, Édouard, APPEL À PROJETS GÉNÉRIQUE 2018 - Algorithmes avec décomposition moins connu: graphes et matroids - - ASSK2018 - ANR-18-CE40-0025 - AAPG2018 - VALID, Digraphes - - DIGRAPHS2019 - ANR-19-CE48-0013 - AAPG2019 - VALID, and Twin-width: théorie et applications - - TWIN-WIDTH2021 - ANR-21-CE48-0014 - AAPG2021 - VALID
- Subjects
FOS: Computer and information sciences ,Computer Science - Logic in Computer Science ,Discrete Mathematics (cs.DM) ,[INFO] Computer Science [cs] ,Logic in Computer Science (cs.LO) ,68R10, 05C85 ,Computer Science - Data Structures and Algorithms ,FOS: Mathematics ,Mathematics - Combinatorics ,Data Structures and Algorithms (cs.DS) ,[INFO]Computer Science [cs] ,Combinatorics (math.CO) ,F.2.2 ,Computer Science - Discrete Mathematics - Abstract
A contraction sequence of a graph consists of iteratively merging two of its vertices until only one vertex remains. The recently introduced twin-width graph invariant is based on contraction sequences. More precisely, if one puts red edges between two vertices representing non-homogeneous subsets, the twin-width is the minimum integer $d$ such that a contraction sequence keeps red degree at most $d$. By changing the condition imposed on the trigraphs (i.e., graphs with some edges being red) and possibly slightly tweaking the notion of contractions, we show how to characterize the well-established bounded rank-width, tree-width, linear rank-width, path-width, and proper minor-closed classes by means of contraction sequences. As an application we give a transparent alternative proof of the celebrated Courcelle's theorem (actually of its generalization by Courcelle, Makowsky, and Rotics), that MSO$_2$ (resp. MSO$_1$) model checking on graphs with bounded tree-width (resp. bounded rank-width) is fixed-parameter tractable in the size of the input sentence. We then explore new avenues along the general theme of contraction sequences both in order to refine the landscape between bounded tree-width and bounded twin-width (via spanning twin-width) and to capture more general classes than bounded twin-width. To this end, we define an oriented version of twin-width, where appearing red edges are oriented away from the newly contracted vertex, and the mere red out-degree should remain bounded. Surprisingly, classes of bounded oriented twin-width coincide with those of bounded twin-width. Finally we examine, from an algorithmic standpoint, the concept of partial contraction sequences, where, instead of terminating on a single-vertex graph, the sequence ends when reaching a particular target class., Comment: 27 pages, 3 figures
- Published
- 2022