1. Alternative parameter learning schemes for monitoring process stability.
- Author
-
Zago, Daniele and Capizzi, Giovanna
- Subjects
STATISTICAL process control ,QUALITY control charts ,COVID-19 pandemic ,SEQUENTIAL learning ,AD hoc computer networks - Abstract
In statistical process control, accurately estimating in-control (IC) parameters is crucial for effective monitoring. This typically requires a Phase I analysis to obtain estimates before monitoring commences. The traditional "fixed" estimate (FE) approach uses these estimates exclusively, while the "adaptive" estimate (AE) approach updates the estimates with each new observation. Such extreme criteria reflect the traditional bias-variance tradeoff in the framework of the sequential parameter learning schemes. This paper proposes an intermediate update rule that generalizes two ad hoc criteria for monitoring univariate Gaussian data, by giving a lower probability to parameter updates when an out-of-control (OC) situation is likely, therefore updating more frequently when there is no evidence of an OC scenario. The simulation study shows that this approach improves the detection power for small and early shifts, which are commonly regarded as a weakness of control charts based on fully online adaptive estimation. The paper also shows that the proposed method performs similarly to the fully adaptive procedure for larger or later shifts. The proposed method is illustrated by monitoring the sudden increase in ICU counts during the 2020 COVID outbreak in New York. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF