46 results on '"space experiments"'
Search Results
2. Exposure Facilities
- Author
-
Horneck, Gerda, Gargaud, Muriel, editor, Irvine, William M., editor, Amils, Ricardo, editor, Claeys, Philippe, editor, Cleaves, Henderson James, editor, Gerin, Maryvonne, editor, Rouan, Daniel, editor, Spohn, Tilman, editor, Tirard, Stéphane, editor, and Viso, Michel, editor
- Published
- 2023
- Full Text
- View/download PDF
3. Applied Research on Colloidal Self-Assembly
- Author
-
Yamanaka, Junpei, Okuzono, Tohru, Toyotama, Akiko, Carpenter, Barry, Series Editor, Ceroni, Paola, Series Editor, Landfester, Katharina, Series Editor, Leszczynski, Jerzy, Series Editor, Luh, Tien-Yau, Series Editor, Perlt, Eva, Series Editor, Polfer, Nicolas C., Series Editor, Salzer, Reiner, Series Editor, Saito, Kazuya, Series Editor, Yamanaka, Junpei, Okuzono, Tohru, and Toyotama, Akiko
- Published
- 2023
- Full Text
- View/download PDF
4. Solar UV Radiation, Biological Effects
- Author
-
Horneck, Gerda, Gargaud, Muriel, editor, Irvine, William M., editor, Amils, Ricardo, editor, Claeys, Philippe, editor, Cleaves, Henderson James, editor, Gerin, Maryvonne, editor, Rouan, Daniel, editor, Spohn, Tilman, editor, Tirard, Stéphane, editor, and Viso, Michel, editor
- Published
- 2023
- Full Text
- View/download PDF
5. Containerless Materials Processing for Materials Science on Earth and in Space
- Author
-
Lee, Jonghyun, Katamreddy, Sai, Cho, Yong Chan, Lee, Sooheyong, Lee, Geun Woo, Lee, Jonghyun, editor, Wagstaff, Samuel, editor, Anderson, Alexandra, editor, Tesfaye, Fiseha, editor, Lambotte, Guillaume, editor, and Allanore, Antoine, editor
- Published
- 2021
- Full Text
- View/download PDF
6. Animal Migration Studies with the Use of ICARUS Scientific Equipment in the URAGAN Space Experiment aboard the Russian Segment of the ISS.
- Author
-
Belyaev, M. Yu., Volkov, O. N., Solomina, O. N., and Tertitsky, G. M.
- Abstract
The major challenges of space research are monitoring and exploration of our planet, which are carried out through the use of remote sensing satellites (RSS) operating in near-Earth orbits. They provide invaluable information for assessing the environmental, epidemiological and other situations on our planet, including animal migration data. The ICARUS project (International Cooperation for Animal Research Using Space) implemented on the International Space Station (ISS) is an ideal laboratory for in-orbit testing of instrumentation and various space technologies aimed to refine methods for tracking movements of mammals and birds. The paper analyzes the experience in the operation of the animal migration monitoring system installed in the Russian segment (RS) of the ISS (ISS RS). The system has incorporated the latest accomplishments in space science, satellite navigation, control technology, and microelectronics. The scientific results on the study of animal and bird migrations obtained within the Russian research program are briefly discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
7. The magnetosphere-ionosphere observatory (MIO) mission concept
- Author
-
Joseph E. Borovsky, Brian A. Bauer, and Michael Holloway
- Subjects
aurora ,magnetosphere ,ionosphere ,M-I coupling ,electron beams ,space experiments ,Astronomy ,QB1-991 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
MIO (Magnetosphere-Ionosphere Observatory) is designed to definitively fix a cause-and-effect problem: In the nightside magnetosphere-ionosphere system we don’t know what is connected to what. The MIO mission concept is to operate a powerful 1-MeV electron accelerator on a main spacecraft in the equatorial nightside magnetosphere: the electron beam is directed into the atmospheric loss cone to deposit ionizing electrons in the atmosphere sufficient to optically illuminate the magnetic footpoint of the spacecraft while 4 nearby daughter spacecraft make equatorial magnetospheric measurements. A network of ground-based optical imagers across Alaska and Canada will locate the optical beamspot thereby unambiguously establishing the magnetic connection between equatorial magnetospheric measurements and ionospheric phenomena. Critical gradient measurements will be made to discern magnetospheric field-aligned-current generator mechanisms. This enables the magnetospheric drivers of various aurora, ionospheric phenomena, and field-aligned currents to be determined. In support of the Solar and Space Physics (Heliophysics) 2022 Decadal Survey, an experienced team of engineers and scientists at The Johns Hopkins University Applied Physics Laboratory (APL) have developed a NASA HMCS (Heliospheric Mission Concept Study) mission concept that can achieve the science objectives. The mission concept presented here is the result of trade studies that optimized the mission with regard to factors such as science objectives, concept study requirements, space environment, engineering constraints, and risk. This Methods paper presents an overview of the MIO concept.
- Published
- 2022
- Full Text
- View/download PDF
8. Мethod for orientation angles forecasting of optical instruments from the international space station with orientation platform
- Author
-
А. A. Lamaka, V. V. Stanchyk, Н. S. Litvinovich, I. I. Bruchkousky, В. I. Belyaev, and М. Y. Belyaev
- Subjects
targeting to the earth objects ,international space station (iss) ,mobile orientation platforms ,space experiments ,sgp4 model ,rotation quaternions ,Electronics ,TK7800-8360 - Abstract
Onboard the International Space Station (ISS), as a part of the “Uragan” Earth exploration experiment, various observation devices are used, including photo and video spectral equipment, the orientation of which is carried out manually by the crew through the portholes. However, severe limitations are imposed on the planning of such experiments, primary related to the necessity taking into account the crew’s daily routine and the availability of time allocated for scientific experiments. The solution for expanding the ability to conduct experiments is the employing of automated orientation platforms (OP). One of these OPs is the video spectral equipment orientation system SOVA-1-426. A method for orientation angles forecasting of optical instruments for pointing at predefined objects on the Earth’s surface with SOVA-1-426 is presented. Moreover, in the described method, in addition to the coordinates of the center of mass, the current orientation of the ISS is taken into account, which makes it possible to perform the forecast with better precision. Taking into account the ISS orientation is carried out through the use of the ISS rotation quaternion to control the platform in automatic mode. The presented method for the orientation angles forecasting of high-resolution photo-camera aboard the ISS by employing SOVA-1-426 allows its automatic alignment on the Earth’s surface objects with accuracy up to seven kilometers. The described method is implemented in software and is currently used in the SOVA-1-426 OP aboard the ISS for the remote sensing of the Earth’s surface.
- Published
- 2021
- Full Text
- View/download PDF
9. Studying Dormancy in Space Conditions
- Author
-
Alekseev, Victor R., Levinskikh, Margarita A., Novikova, Natalia D., Sychev, Vladimir N., Dumont, Henri J., Series Editor, Alekseev, Victor R., editor, and Pinel-Alloul, Bernadette, editor
- Published
- 2019
- Full Text
- View/download PDF
10. Capabilities of the GAMMA-400 gamma-ray telescope to detect gamma-ray bursts from lateral directions.
- Author
-
Leonov, A.A., Galper, A.M., Topchiev, N.P., Arkhangelskaja, I.V., Arkhangelskiy, A.I., Bakaldin, A.V., Chernysheva, I.V., Dalkarov, O.D., Egorov, A.E., Kheymits, M.D., Korotkov, M.G., Malinin, A.G., Mayorov, A.G., Mikhailov, V.V., Mikhailova, A.V., Yu Minaev, P., Yu Pappe, N., Picozza, P., Sparvoli, R., and Stozhkov, Yu.I.
- Subjects
- *
GAMMA ray bursts , *GALACTIC cosmic rays , *NEUTRINO detectors , *TELESCOPES , *SCINTILLATION counters , *TERRESTRIAL radiation , *RADIATION belts - Abstract
• The GAMMA-400 gamma-ray telescope performance for lateral aperture. • Detection of GRB from the lateral aperture in the energy range from ∼ 10 to ∼ 100 MeV. • The problem of connection between high- and low-energy gamma-ray emissions of GRBs. The currently developing space-based gamma-ray telescope GAMMA-400 will measure the gamma-ray and electron + positron fluxes using the main top-down aperture in the energy range from ∼ 20 MeV to several TeV in a highly elliptic orbit (without shading the telescope by the Earth and outside the radiation belts) continuously for a long time. The instrument will provide fundamentally new data on discrete gamma-ray sources, gamma-ray bursts (GRBs), sources and propagation of Galactic cosmic rays and signatures of dark matter due to its unique angular and energy resolutions in the wide energy range. The gamma-ray telescope consists of the anticoincidence system (AC), the converter-tracker (C), the time-of-flight system (S1 and S2), the position-sensitive and electromagnetic calorimeters (CC1 and CC2), scintillation detectors (S3 and S4) located above and behind the CC2 calorimeter and lateral detectors (LD) located around the CC2 calorimeter. In this paper, the capabilities of the GAMMA-400 gamma-ray telescope to measure fluxes of GRBs from lateral directions of CC2 are analyzed using Monte-Carlo simulations. The analysis is based on off-line second-level trigger construction using signals from S3, CC2, S4 and LD detectors. For checking the numerical algorithm the data from space-based GBM and LAT instruments of the Fermi experiment are used, namely, three long bursts: GRB 080916C, GRB 090902B, GRB 090926A and one short burst GRB 090510A. The obtained results allow us to conclude that from lateral directions the GAMMA-400 space-based gamma-ray telescope will reliably measure the spectra of bright GRBs in the energy range from ∼ 10 to ∼ 100 MeV with the on-axis effective area of about 0.13 m2 for each of the four sides of CC2 and total field of view of about 6 sr. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
11. A Mission Concept to Determine the Magnetospheric Causes of Aurora
- Author
-
Joseph E. Borovsky, Gian Luca Delzanno, and Michael G. Henderson
- Subjects
aurora ,space experiments ,magnetosphere ,ionosphere ,electron beams ,Astronomy ,QB1-991 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Insufficiently accurate magnetic-field-line mapping between the aurora and the equatorial magnetosphere prevents us from determining the cause of many types of aurora. An important example is the longstanding question of how the magnetosphere drives low-latitude (growth-phase) auroral arcs: a large number of diverse generator mechanisms have been hypothesized but equatorial magnetospheric measurements cannot be unambiguously connected to arcs in the ionosphere, preventing the community from identifying the correct generator mechanisms. Here a mission concept is described to solve the magnetic-connection problem. From an equatorial instrumented spacecraft, a powerful energetic-electron beam is fired into the atmospheric loss cone resulting in an optical beam spot in the upper atmosphere that can be optically imaged from the ground, putting the magnetic connection of the equatorial spacecraft’s measurements into the context of the aurora. Multiple technical challenges that must be overcome for this mission concept are discussed: these include spacecraft charging, beam dynamics, beam stability, detection of the beam spot in the presence of aurora, and the safety of nearby spacecraft.
- Published
- 2020
- Full Text
- View/download PDF
12. Extraterrestrial Delivery of Organic Compounds
- Author
-
Brack, André, Gargaud, Muriel, editor, Irvine, William M., editor, Amils, Ricardo, editor, Cleaves, Henderson James (Jim), II, editor, Pinti, Daniele L., editor, Quintanilla, José Cernicharo, editor, Rouan, Daniel, editor, Spohn, Tilman, editor, Tirard, Stéphane, editor, and Viso, Michel, editor
- Published
- 2015
- Full Text
- View/download PDF
13. Exposure Facilities
- Author
-
Horneck, Gerda, Gargaud, Muriel, editor, Irvine, William M., editor, Amils, Ricardo, editor, Cleaves, Henderson James (Jim), II, editor, Pinti, Daniele L., editor, Quintanilla, José Cernicharo, editor, Rouan, Daniel, editor, Spohn, Tilman, editor, Tirard, Stéphane, editor, and Viso, Michel, editor
- Published
- 2015
- Full Text
- View/download PDF
14. Information control system for space experiments onboard international space station
- Author
-
F. A. Voronin and I. V. Dunaeva
- Subjects
information-control system ,iss ,space experiments ,payload ,Motor vehicles. Aeronautics. Astronautics ,TL1-4050 - Abstract
The paper considers development of the Information Control System (ICS) of the Russian Segment of the International Space Station (ISS). The main ICS modules for carrying out scientific experiments comprise the Service Module, the Multipurpose Laboratory Module and the Science Power Module. At present specialists of Energia RSC are working to create high-tech conditions for scientific experiments on the new ISS modules, modernize the existing ones and combine them into a single onboard ISS information control complex. The information control system (ICS) is intended for automatic and manual control of space experiments. The effectiveness of modernization was confirmed by the results obtained during space experiments on the basis of the Information Control System. The ICS modernization started in 2012. At that time the ICS consisted of 4 onboard computers. The main task of ICS modernization was to introduce new computers and software-hardware systems. The software was supposed to have a flexible architecture and provide resources for all future onboard payloads. At the first stage one onboard computer was replaced. The main purpose of that stage was to test the new ISS hardware and software. The rest of the ICS computers will be replaced at the second stage, the Multipurpose Laboratory Module and the Science Power Module will also be equipped. The reliability of the system hardware is improved using functional backup. In 2014 2 cameras were installed on the ISS together with UrtheCast company (Canada).One of the cameras is a middle resolution camera; the other one is a high resolution camera. Today ground preparation of an experiment with Icarus scientific equipment is being carried out, jointly with the German Center of Aviation, DLR, and the SpaceTech company (Germany). The experience of the first stage of modernization suggests that the modernized ISS RS ICS will become an up-to-date system allowing the realization of most ambitious space experiments in automatic mode.
- Published
- 2017
- Full Text
- View/download PDF
15. Access to Space: Capacity-building for development through experiment and payload opportunities.
- Author
-
García Yárnoz, Daniel, Kojima, Ayami, and Di Pippo, Simonetta
- Subjects
- *
SPACE exploration , *INTERPLANETARY voyages , *SPACE vehicles , *GALAXIES - Abstract
Abstract The United Nations Office for Outer Space Affairs has developed a comprehensive set of capacity-building activities and associated partnerships providing access to experimental facilities on ground and to a wide range of Low Earth Orbit platforms. These opportunities are available to applicants from high-school to university level, as well as other research, governmental and inter-governmental institutions. This is a unique approach to space capacity-building, away from the traditional classroom or lecture methods, aimed at developing and emerging economies, as well as encouraging cooperation with agencies and institutions from developed nations. This paper summarizes the series of activities and related programmatic and roadmap of the Office. Highlights • The Office for Outer Space Affairs provides capacity-building in space technologies. • Experiment and payload opportunities with increasing complexity are available. • Opportunities include microgravity experiments on ground and in orbit. • Activities aim at facilitating access to space to developing and emerging countries. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
16. Possible Technologies of Progress Transport Cargo Vehicle Control during Experiments in Free Flight.
- Author
-
Belyaev, M. Yu., Matveeva, T. V., and Rulev, D. N.
- Abstract
The International Space Station (ISS) project involves Russian Progress transport cargo vehicles (TCV) which often retain residual resources of their basic systems after they have completed their main tasks in the ISS program. Utilization of these resources for research purposes during free flight of the TCV after undocking from the station increases the efficiency of both the TCV operation and the ISS research program as a whole. Transport cargo vehicles can be used for research in various fields: in-flight tests, trials, validation and certification of various equipment, materials, and systems to the benefit of other spacecraft programs; conducting experiments within the framework of the Earth study using additional equipment; microgravity experiments taking into account specific capabilities of TCV; launch of small satellites and explorers after TCV undocking from the station and settling into specified orbit, etc. To perform research using the Progress transport cargo vehicles, new efficient technologies are proposed. These technologies required some specific methods of control to be developed. This paper addresses these technologies, as well as some of the developed control methods. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
17. Solar UV Radiation, Biological Effects
- Author
-
Horneck, Gerda, Gargaud, Muriel, editor, Irvine, William M., editor, Amils, Ricardo, editor, Cleaves, Henderson James (Jim), II, editor, Pinti, Daniele L., editor, Quintanilla, José Cernicharo, editor, Rouan, Daniel, editor, Spohn, Tilman, editor, Tirard, Stéphane, editor, and Viso, Michel, editor
- Published
- 2015
- Full Text
- View/download PDF
18. Design and expected performances of the large acceptance calorimeter for the HERD space mission
- Author
-
Pacini, L., Adriani, O., Bai, Y. -L., Bao, T. -W., Berti, E., Bottai, S., Cao, W. -W., Casaus, J., Cui, X. -Z., D’Alessandro, R., Formato, V., Gao, J. -R., Li, R., Liu, X., Lorusso, L., Lyu, L. -W., Marin, J., Martinez, G., Pizzolotto, C., Qin, J. -J., Quan, Z., Shi, D. -L., Starodubtsev, O., Tang, Z. -C., Tiberio, A., Vagelli, V., Velasco, M. A., Wang, B., Wang, Hongmei, R. -J., Z. -G., Xu, M., Yang, Y., Zhang, L., Zheng, J. -K., Alemanno, F., Aloisio, R., Altomare, G., Ambrosi, G., An, Q., Antonelli, M., Azzarello, P., Bai, L., Bai, Y. L., Bao, T. W., Barbanera, M., Barbato, F. C. T., Bernardini, P., Berti, B., Bertucci, B., X. J., Bi, Bigongiari, G., Bongi, M., Bonvicini, V., Bordas, P., Bosch-Ramon, V., Brogi, P., Cadoux, F., Campana, D., Cao, W. W., Cao, Z., Catanzani, E., Cattaneo, P. W., Chang, J., Chang, Y. H., Chen, G. M., Chen, F., Cianetti, F., Comerma, A., Cortis, D., Cui, X. H., Cui, X. Z., Dai, C., Dai, Z. G., Gaetanoe, De, Mitri, De, Palma, De, Felice, Di, Giovanni, Di, Santo, Di, Venere, Di, Dong, L., Dong, J. N., Donvito, Y. W., Duranti, G., D’Urso, M., Evoli, D., Fang, C., Fariña, K., Favre, L., Feng, Y., Feng, C. Q., Feng, H., Feng, H. B., Finetti, Z. K., Formato, N., Frieden, V., Fusco, J. M., Gao, P., Gargano, J. R., Gascon-Fora, F., Gasparrini, D., Giglietto, D., Giovacchini, N., Gomez, F., Gong, S., Gou, K., Guida, Q. B., Guo, R., Guo, D. Y., Guo, J. H., Y. Q., He, H. H., Hu, H. B., Hu, J. Y., Hu, Hu, P., Huang, Y. M., Huang, G. S., Huang, J., Huang, W. H., Huang, X. T., Huang, Y. B., Ionica, Y. F., Jouvin, M., Kotenko, L., Kyratzis, A., Marra, La, Li, D., M. J., Li, Q. Y., Li, S. L., Li, Li, T., Li, X., Li, Z., Liang, Z. H., Liang, E. W., Liao, M. J., Licciulli, C. L., Lin, F., Liu, S. J., Liu, D., Liu, H. B., Liu, H., Liu, J. B., Liu, S. B., Liu, X. W., Loparco, Y. Q., Loporchio, F., Lu, S., Lyu, X., Lyu, J. G., Maestro, L. W., Mancini, E., Manera, E., Marin, R., Marrocchesi, J., Marsella, P. S., Marzullo, M., Mauricio, D., Mocchiutti, J., Morettini, G., Mori, G., Mussolin, L., Nicola, Mazziotta, Oliva, M., Orlandi, A., Osteria, D., Pacini, G., Panico, L., Pantalei, B., Papa, F. R., Papini, S., Paredes, P., Parenti, J. M., Pauluzzi, A., Pearce, M., Peng, M., Perfetto, W. X., Perrina, F., Perrotta, C., Pillera, G., Pizzolotto, R., Qiao, C., Qin, R., Quadrani, J. J., Quan, L., Rappoldi, Z., Raselli, A., Ren, G., Renno, X. X., Ribo, F., Rico, M., Rossella, J., Ryde, M., Sanmukh, F., Scotti, A., Serini, V., Shi, D., Shi, D. L., Silveri, Q. Q., Starodubtsev, L., Su, O., D. T., Su, Sukhonos, M., Suma, D., Sun, A., Sun, X. L., Surdo, Z. T., Tang, A., Tiberio, Z. C., Tykhonov, A., Vagelli, A., Vannuccini, V., Velasco, E., Walter, M., Wang, R., Wang, A. Q., Wang, J. C., Wang, J. M., Wang, J. J., Wang, L., Wang, M., Wang, R. J., Wang, S., Wang, X. Y., Wang, X. L., Wei, Z. G., Wei, D. M., J. J., Wu, B. B., Wu, Wu, J., L. B., Wu, Wu, X., Xin, X. F., Y. L., Xu, Yan, Z. Z., Yang, H. R., Yin, Y., P. F., Yu, Yuan, Y. W., Zampa, Q., Zampa, G., Zha, N., Zhang, M., Zhang, C., Zhang, F. Z., Zhang, L. F., Zhang, S. N., Zhang, Y., Zhao, Y. L., Zheng, Z. G., Zhou, J. K., Zhu, Y. L., Zhu, F. R., and K. J.
- Subjects
Space experiments ,Energy ,Scintillating fiber ,Performance ,Monte Carlo methods ,Measurements of ,Space stations ,Space missions ,Cosmology ,Cosmic rays ,Intelligent systems ,Scintillation counters ,Silicon detectors ,Charge detectors ,Fiber trackers ,Radiation detection ,Read out systems ,Calorimeters - Published
- 2022
19. Ultra-Low Power Discrete-Time Readout for CMOS Radiation Sensors
- Author
-
S. Durando
- Subjects
Discrete-time Analog Front-end ,Analog Design ,Particle Detectors ,CMOS Sensors ,Mixed Signals ,Low Power Applications ,Space Experiments - Published
- 2022
20. Біотехнологічні програми на Міжнародній космічній станції
- Author
-
Mykhailo Baranovskyy and Larysa Chubko
- Subjects
biotech ,мікрогравітація ,ISS ,биотехнологии ,космічні експерименти ,микрогравитация ,біотехнологія ,космические эксперименты ,МКС ,General Medicine ,space experiments ,microgravity - Abstract
Space experiments at the International Space Station related to biotechnology are considered. Рассмотрены космические эксперименты на Международной космической станции, касающиеся биотехнологии. Розглянуто космічні експерименти на Міжнародній космічній станції, які стосуються біотехнології.
- Published
- 2021
21. CONTROL, ASSESSMENT AND REMOVAL OF SYSTEMATIC EFFECTS IN PLANCK.
- Author
-
MENNELLA, A.
- Subjects
- *
COSMIC background radiation , *ANISOTROPY , *GALAXY clusters , *GENERAL relativity (Physics) , *PHYSICS experiments - Published
- 2015
22. MICROSCOPE's view at gravitation.
- Author
-
Bergé J
- Abstract
The weak equivalence principle (WEP) is the cornerstone of general relativity (GR). Testing it is thus a natural way to confront GR to experiments, which has been pursued for four centuries with increasing precision. MICROSCOPE is a space mission designed to test the WEP with a precision of 1 in 10
15 parts, two orders of magnitude better than previous experimental constraints. After completing its two-year mission, from 2016 to 2018, MICROSCOPE delivered unprecedented precise constraintsη(Ti,Pt)=[-1.5±2.3 (stat)±1.5 (syst)]×10-15(at 1 σ in statistical errors) on the Eötvös parameter between one proof mass made of titanium and another made of platinum. This bound allowed for improved constraints on alternative theories of gravitation. This review discusses the science beyond MICROSCOPE-GR and its alternatives, with an emphasis on scalar-tensor theories-before presenting the experimental concept and apparatus. The mission's science returns are then discussed before future tests of the WEP are introduced., (© 2023 IOP Publishing Ltd.)- Published
- 2023
- Full Text
- View/download PDF
23. Testing the foundation of quantum physics in space via Interferometric and non-interferometric experiments with mesoscopic nanoparticles
- Author
-
Hendrik Ulbricht, Mauro Paternostro, Alessio Belenchia, Sandro Donadi, Matteo Carlesso, Angelo Bassi, Giulio Gasbarri, Rainer Kaltenbaek, Gasbarri, Giulio, Belenchia, Alessio, Carlesso, Matteo, Donadi, Sandro, Bassi, Angelo, Kaltenbaek, Rainer, Paternostro, Mauro, and Ulbricht, Hendrik
- Subjects
quantum foundation ,Space technology ,Field (physics) ,Computer science ,QC1-999 ,space experiment ,General Physics and Astronomy ,quantum foundations ,interferometry ,space experiments ,Astrophysics ,Space (mathematics) ,01 natural sciences ,010305 fluids & plasmas ,Superposition principle ,Quantum mechanics ,0103 physical sciences ,639/766/483/1139 ,Astrophysics::Solar and Stellar Astrophysics ,010306 general physics ,Mesoscopic physics ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,639/766/483/3924 ,QB460-466 ,Quantum technology ,Perspective ,Space Science ,Space environment - Abstract
Quantum technologies are opening novel avenues for applied and fundamental science at an impressive pace. In this perspective article, we focus on the promises coming from the combination of quantum technologies and space science to test the very foundations of quantum physics and, possibly, new physics. In particular, we survey the field of mesoscopic superpositions of nanoparticles and the potential of interferometric and non-interferometric experiments in space for the investigation of the superposition principle of quantum mechanics and the quantum-to-classical transition. We delve into the possibilities offered by the state-of-the-art of nanoparticle physics projected in the space environment and discuss the numerous challenges, and the corresponding potential advancements, that the space environment presents. In doing this, we also offer an ab-initio estimate of the potential of space-based interferometry with some of the largest systems ever considered and show that there is room for tests of quantum mechanics at an unprecedented level of detail. This perspective presents current and future possibilities offered by space technology for testing quantum mechanics, with a focus on mesoscopic superposition of nanoparticles and the potential of interferometric and non-interferometric experiments in space.
- Published
- 2021
24. Separation of electrons and protons in the GAMMA-400 gamma-ray telescope.
- Author
-
Leonov, A.A., Galper, A.M., Bonvicini, V., Topchiev, N.P., Adriaini, O., Aptekar, R.L., Arkhangelskaja, I.V., Arkhangelskiy, A.I., Bergstrom, L., Berti, E., Bigongiari, G., Bobkov, S.G., Boezio, M., Bogomolov, E.A., Bonechi, S., Bongi, M., Bottai, S., Castellini, G., Cattaneo, P.W., and Cumani, P.
- Subjects
- *
SEPARATION (Technology) , *PROTONS , *GAMMA rays , *COSMIC rays , *ELECTRONS , *DARK matter - Abstract
The GAMMA-400 telescope will measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. These measurements will allow it to achieve the following scientific objectives: search for signatures of dark matter, investigation of gamma-ray point-like and extended sources, study of the energy spectrum of the Galactic and extragalactic diffuse emission, study of gamma-ray bursts and gamma-ray emission from the active Sun, together with high-precision measurements of the high-energy electrons and positrons spectra, protons and nuclei up to the knee. The bulk of cosmic rays are protons and helium nuclei, whereas the lepton component in the total flux is ∼10 −3 at high energy. In the present paper, the simulated capability of the GAMMA-400 telescope to distinguish electrons and positrons from protons in cosmic rays is addressed. The individual contribution to the proton rejection from each detector system of GAMMA-400 is studied separately. The use of the combined information from all detectors allows us to reach a proton rejection of the order of ∼4 × 10 5 for vertical incident particles and ∼3 × 10 5 for particles with initial inclination of 30° in the electron energy range from 50 GeV to 1 TeV. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
25. Role of the plant cell wall in gravity resistance.
- Author
-
Hoson, Takayuki and Wakabayashi, Kazuyuki
- Subjects
- *
PLANT cell walls , *GRAVITATION , *REDUCED gravity environments , *PHENOLS , *POLYSACCHARIDES - Abstract
Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
26. Scheduling scientific experiments for comet exploration.
- Author
-
Simonin, Gilles, Artigues, Christian, Hebrard, Emmanuel, and Lopez, Pierre
- Abstract
The Rosetta/Philae mission was launched in 2004 by the European Space Agency (ESA). It is scheduled to reach the comet 67P/Churyumov-Gerasimenko in November 2014 after traveling more than six billion kilometers. The Philae module will then be separated from the orbiter (Rosetta) to attempt the first ever landing on the surface of a comet. If it succeeds, it will engage a sequence of scientific exploratory experiments on the comet. In this paper, we describe a constraint programming model for scheduling the different experiments of the mission. A feasible plan must satisfy a number of constraints induced by energetic resources, precedence relations on tasks, and incompatibility between instruments. Moreover, a very important aspect is related to the transfer (to the orbiter then to the Earth) of all the data produced by the instruments. The capacity of inboard memories and the limitation of transfers within visibility windows between lander and orbiter, make the transfer policy implemented on the lander CPU prone to data loss. We introduce a global constraint to handle data transfers. The purpose of this constraint is to ensure that data-producing tasks are scheduled in such a way that no data is lost. Thanks to this constraint and to the filtering rules we propose, mission control is now able to compute feasible plans in a few seconds for scenarios where minutes were previously often required. Moreover, in many cases, data transfers are now much more accurately simulated, thus increasing the reliability of the plans. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
27. A Mission Concept to Determine the Magnetospheric Causes of Aurora
- Author
-
Michael G. Henderson, Joseph E. Borovsky, and Gian Luca Delzanno
- Subjects
010504 meteorology & atmospheric sciences ,lcsh:Astronomy ,Optical beam ,Magnetosphere ,Context (language use) ,ionosphere ,01 natural sciences ,electron beams ,Spacecraft charging ,lcsh:QB1-991 ,0103 physical sciences ,Aerospace engineering ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,Spacecraft ,business.industry ,lcsh:QC801-809 ,Astronomy and Astrophysics ,aurora ,lcsh:Geophysics. Cosmic physics ,Physics::Space Physics ,magnetosphere ,Astrophysics::Earth and Planetary Astrophysics ,Ionosphere ,business ,space experiments ,Beam (structure) ,Generator (mathematics) - Abstract
Insufficiently accurate magnetic-field-line mapping between the aurora and the equatorial magnetosphere prevents us from determining the cause of many types of aurora. An important example is the longstanding question of how the magnetosphere drives low-latitude (growth-phase) auroral arcs: a large number of diverse generator mechanisms have been hypothesized but equatorial magnetospheric measurements cannot be unambiguously connected to arcs in the ionosphere, preventing the community from identifying the correct generator mechanisms. Here a mission concept is described to solve the magnetic-connection problem. From an equatorial instrumented spacecraft, a powerful energetic-electron beam is fired into the atmospheric loss cone resulting in an optical beam spot in the upper atmosphere that can be optically imaged from the ground, putting the magnetic connection of the equatorial spacecraft’s measurements into the context of the aurora. Multiple technical challenges that must be overcome for this mission concept are discussed: these include spacecraft charging, beam dynamics, beam stability, detection of the beam spot in the presence of aurora, and the safety of nearby spacecraft.
- Published
- 2020
- Full Text
- View/download PDF
28. A systematic way to life detection – combining field, lab and space research in low Earth orbit
- Author
-
de Vera, J. P., Billi, D., Böttger, Ute, Cockell, C., de la Torre, R., Foing, B., Hanke, F., Leuko, Stefan, Martinez-Frias, J., Moeller, Ralf, Olsson-Francis, K., Onofri, S., Rettberg, Petra, Schröder, Susanne, Schulze-Makuch, D., Selbmann, L., Wagner, D., and Zucconi, L.
- Subjects
Life detection ,field Research ,planetary Simulation ,space experiments ,space exploration - Published
- 2019
29. Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station
- Author
-
AMS Collaboration, Ali Cavasonza, L., Bachlechner, A., Beischer, B., Chung, C. H., Gast, H., Kirn, Th., Luebelsmeyer, K., Machate, F., Nikonov, N., Räihä, T., Schael, S., Schulz Von Dratzig, A., Schwering, G., Siedenburg, T., Zhukov, V., Zimmermann, N., Demirköz, M. B., Konak, C., Türkoǧlu, C., Caroff, S., Coignet, G., Goy, C., Poireau, V., Rosier-Lees, S., Vialle, J. P., Shan, B. S., Zheng, Z. M., Dai, Y. M., Wang, Q. L., Yu, Y. J., Başeǧmez-Du Pree, S., Chen, G. M., Chen, H. S., Li, Z. H., Lu, Y. S., Tang, X. W., Tang, Z. C., Wang, X. Q., Yang, M., Yu, Z. Q., Zhang, C., Zhang, F., Zhang, S. W., Zhuang, H. L., Contin, A., Laurenti, G., Masi, N., Palmonari, F., Quadrani, L., Zichichi, A., Becker, U., Behlmann, M., Burger, J., Cai, X. D., Capell, M., Chen, A. I., Choumilov, E., Choutko, V., Dadzie, K., Egorov, A., Eline, A., Feng, J., Fisher, P., Galaktionov, Y., Heil, M., Hsieh, T. H., Jia, Yi, Kounina, O., Kounine, A., Koutsenko, V., Kulemzin, A., Lebedev, A., Liu, Hu, Phan, H. D., Plyaskin, V., Qin, X., Rozhkov, A., Ting, Samuel C. C., Ting, S. M., Wang, X., Weng, Z. L., Xu, W., Yan, Q., Zhang, J., Zhang, Z., Zuccon, P., Chang, Y. H., Chou, H. Y., Khiali, B., Liu, D., Sagdeev, R., Picot-Clemente, N., Seo, E. S., Huh, C., Jang, W. Y., Kang, S. C., Kim, G. N., Kim, K. S., Lim, S., Son, D., Castellini, G., Barrin, L., Gargiulo, C., Kanishev, K., Laudi, E., Azzarello, P., Bourquin, M., Cadoux, F., Leluc, C., Li, Y., Paniccia, M., Perrina, C., Pohl, M., Rapin, D., Wu, X., Aupetit, S., Barrau, A., Bonnivard, V., Derome, L., Ghelfi, A., Maurin, D., Ricol, J. S., Guo, K. H., He, Z. H., Huang, Z. C., Li, T. X., Li, Z. Y., Lu, S. Q., Lyu, S. S., Mo, D. C., Ni, J. Q., Qi, X. M., Wang, Z. X., Bindi, V., Consolandi, C., Corti, C., Datta, A., Von Doetinchem, P., Nelson, T., Palermo, M., Whitman, K., Bollweg, K., Clark, C., Martin, T., Mott, P., Urban, T., Attig, N., Lippert, T., Schmidt, S. M., Bindel, K. F., De Boer, W., Gebauer, I., Graziani, M., Zeissler, S., Clavero, R., García-López, R. J., Tescaro, D., Vázquez Acosta, M., Arruda, L., Barao, F., Orcinha, M., Han, K. C., Jinchi, H., Aguilar, M., Berdugo, J., Casaus, J., Delgado, C., Díaz, C., Giovacchini, F., Mañá, C., Marín, J., Martínez, G., Oliva, A., Palomares, C., Velasco, M., Gómez-Coral, D. M., Grabski, V., Menchaca-Rocha, A., Boschini, M. J., Della Torre, S., Gervasi, M., Grandi, D., La Vacca, G., Pensotti, S., Rancoita, P. G., Rozza, D., Tacconi, M., Zannoni, M., Dong, F., Gong, J., Li, J. Q., Li, Q., Luo, J. Z., Meng, Q., Shi, J. Y., Wu, H., Xiong, R. Q., Yi, H., Zhang, J. H., Ambrosi, G., Bertucci, B., Crispoltoni, M., Donnini, F., Duranti, M., D'Urso, D., Fiandrini, E., Formato, V., Ionica, M., Nozzoli, F., Pauluzzi, M., Pizzolotto, C., Tomassetti, N., Vagelli, V., Cervelli, F., Di Falco, S., Gallucci, G., Incagli, M., Pilo, F., Basara, L., Battiston, R., Burger, W. J., Dimiccoli, F., Lazzizzera, I., Vitale, V., Bartoloni, A., Borgia, B., Lipari, P., Valente, E., Bueno, E. F., Lordello, V. D., Mikuni, V. M., Vecchi, M., Chae, M. J., Yang, J., Cheng, L., Cui, Z., Luo, F., Song, J. W., Wang, L. Q., Wang, N. H., Li, H. S., Yang, Y., Lee, H. T., Creus, W., Haino, S., Huang, H., Lee, S. C., Lin, C. H., Qu, Z. Y., Wei, C. C., Battarbee, M., Eronen, T., Torsti, J., Valtonen, E., Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), AMS, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Massachusetts Institute of Technology. Department of Physics, Massachusetts Institute of Technology. Laboratory for Nuclear Science, Behlmann, Matthew Daniel, Burger, Joseph D, Cai, Xudong, Capell, Michael H, Chen, Andrew I, Choumilov, Evgueni, Choutko, Vitali, Dadzie, K., Egorov, Alexander, Eline, Alexandre, Feng, Jie, Fisher, Peter H, Galaktionov, Y., Heil, Melanie, Hsieh, Timothy Hwa-wei, Jia, Yi, Kounina, Olga, Kounine, Andrei, Koutsenko, Vladimir, Kulemzin, Alexander, Lebedev, Alexei, Liu, Hu, Phan, Huy Duc, Plyaskin, Vasily, Qin, Xiaoting, Rozhkov, Andrey B., Ting, Samuel, Marks Ting, Susan Carol, Wang, Xiaozhen, Weng, Zhili, Xu, Weiwei, Yan, Qi, Zhang, J., Zhang, Zhan, Zuccon, Paolo, Azzarello, Philipp, Bourquin, Maurice, Cadoux, Franck, Leluc, Catherine, Li, Yang, Paniccia, Mercedes, Pohl, Martin, Rapin, Divic Jean, Wu, Xin, Perrina, Chiara, Aguilar, M., Ali Cavasonza, L., Ambrosi, G., Arruda, L., Attig, N., Aupetit, S., Azzarello, P., Bachlechner, A., Barao, F., Barrau, A., Barrin, L., Bartoloni, A., Basara, L., Başeǧmez-Du Pree, S., Battarbee, M., Battiston, R., Becker, U., Behlmann, M., Beischer, B., Berdugo, J., Bertucci, B., Bindel, K.F., Bindi, V., De Boer, W., Bollweg, K., Bonnivard, V., Borgia, B., Boschini, M.J., Bourquin, M., Bueno, E.F., Burger, J., Burger, W.J., Cadoux, F., Cai, X.D., Capell, M., Caroff, S., Casaus, J., Castellini, G., Cervelli, F., Chae, M.J., Chang, Y.H., Chen, A.I., Chen, G.M., Chen, H.S., Cheng, L., Chou, H.Y., Choumilov, E., Choutko, V., Chung, C.H., Clark, C., Clavero, R., Coignet, G., Consolandi, C., Contin, A., Corti, C., Creus, W., Crispoltoni, M., Cui, Z., Dai, Y.M., Datta, A., Delgado, C., Della Torre, S., Demirköz, M.B., Derome, L., Di Falco, S., Dimiccoli, F., Díaz, C., Von Doetinchem, P., Dong, F., Donnini, F., Duranti, M., D'Urso, D., Egorov, A., Eline, A., Eronen, T., Feng, J., Fiandrini, E., Fisher, P., Formato, V., Gallucci, G., García-López, R.J., Gargiulo, C., Gast, H., Gebauer, I., Gervasi, M., Ghelfi, A., Giovacchini, F., Gómez-Coral, D.M., Gong, J., Goy, C., Grabski, V., Grandi, D., Graziani, M., Guo, K.H., Haino, S., Han, K.C., He, Z.H., Heil, M., Hsieh, T.H., Huang, H., Huang, Z.C., Huh, C., Incagli, M., Ionica, M., Jang, W.Y., Jinchi, H., Kang, S.C., Kanishev, K., Khiali, B., Kim, G.N., Kim, K.S., Kirn, Th., Konak, C., Kounina, O., Kounine, A., Koutsenko, V., Kulemzin, A., La Vacca, G., Laudi, E., Laurenti, G., Lazzizzera, I., Lebedev, A., Lee, H.T., Lee, S.C., Leluc, C., Li, H.S., Li, J.Q., Li, Q., Li, T.X., Li, Y., Li, Z.H., Li, Z.Y., Lim, S., Lin, C.H., Lipari, P., Lippert, T., Liu, D., Lordello, V.D., Lu, S.Q., Lu, Y.S., Luebelsmeyer, K., Luo, F., Luo, J.Z., Lyu, S.S., Machate, F., Mañá, C., Marín, J., Martin, T., Martínez, G., Masi, N., Maurin, D., Menchaca-Rocha, A., Meng, Q., Mikuni, V.M., Mo, D.C., Mott, P., Nelson, T., Ni, J.Q., Nikonov, N., Nozzoli, F., Oliva, A., Orcinha, M., Palermo, M., Palmonari, F., Palomares, C., Paniccia, M., Pauluzzi, M., Pensotti, S., Perrina, C., Phan, H.D., Picot-Clemente, N., Pilo, F., Pizzolotto, C., Plyaskin, V., Pohl, M., Poireau, V., Quadrani, L., Qi, X.M., Qin, X., Qu, Z.Y., Räihä, T., Rancoita, P.G., Rapin, D., Ricol, J.S., Rosier-Lees, S., Rozhkov, A., Rozza, D., Sagdeev, R., Schael, S., Schmidt, S.M., Schulz Von Dratzig, A., Schwering, G., Seo, E.S., Shan, B.S., Shi, J.Y., Siedenburg, T., Son, D., Song, J.W., Tacconi, M., Tang, X.W., Tang, Z.C., Tescaro, D., Ting, Samuel C. C., Ting, S.M., Tomassetti, N., Torsti, J., Türkoǧlu, C., Urban, T., Vagelli, V., Valente, E., Valtonen, E., Vázquez Acosta, M., Vecchi, M., Velasco, M., Vialle, J.P., Vitale, V., Wang, L.Q., Wang, N.H., Wang, Q.L., Wang, X., Wang, X.Q., Wang, Z.X., Wei, C.C., Weng, Z.L., Whitman, K., Wu, H., Wu, X., Xiong, R.Q., Xu, W., Yan, Q., Yang, J., Yang, M., Yang, Y., Yi, H., Yu, Y.J., Yu, Z.Q., Zannoni, M., Zeissler, S., Zhang, C., Zhang, F., Zhang, J.H., Zhang, S.W., Zhang, Z., Zheng, Z.M., Zhuang, H.L., Zhukov, V., Zichichi, A., Zimmermann, N., Zuccon, P., Aguilar, M, Ali Cavasonza, L, Ambrosi, G, Arruda, L, Attig, N, Aupetit, S, Azzarello, P, Bachlechner, A, Barao, F, Barrau, A, Barrin, L, Bartoloni, A, Basara, L, Başeğmez-du Pree, S, Battarbee, M, Battiston, R, Becker, U, Behlmann, M, Beischer, B, Berdugo, J, Bertucci, B, Bindel, K, Bindi, V, de Boer, W, Bollweg, K, Bonnivard, V, Borgia, B, Boschini, M, Bourquin, M, Bueno, E, Burger, J, Burger, W, Cadoux, F, Cai, X, Capell, M, Caroff, S, Casaus, J, Castellini, G, Cervelli, F, Chae, M, Chang, Y, Chen, A, Chen, G, Chen, H, Cheng, L, Chou, H, Choumilov, E, Choutko, V, Chung, C, Clark, C, Clavero, R, Coignet, G, Consolandi, C, Contin, A, Corti, C, Creus, W, Crispoltoni, M, Cui, Z, Dadzie, K, Dai, Y, Datta, A, Delgado, C, Della Torre, S, Demirköz, M, Derome, L, Di Falco, S, Dimiccoli, F, Díaz, C, von Doetinchem, P, Dong, F, Donnini, F, Duranti, M, D’Urso, D, Egorov, A, Eline, A, Eronen, T, Feng, J, Fiandrini, E, Fisher, P, Formato, V, Galaktionov, Y, Gallucci, G, García-López, R, Gargiulo, C, Gast, H, Gebauer, I, Gervasi, M, Ghelfi, A, Giovacchini, F, Gómez-Coral, D, Gong, J, Goy, C, Grabski, V, Grandi, D, Graziani, M, Guo, K, Haino, S, Han, K, He, Z, Heil, M, Hsieh, T, Huang, H, Huang, Z, Huh, C, Incagli, M, Ionica, M, Jang, W, Jia, Y, Jinchi, H, Kang, S, Kanishev, K, Khiali, B, Kim, G, Kim, K, Kirn, T, Konak, C, Kounina, O, Kounine, A, Koutsenko, V, Kulemzin, A, La Vacca, G, Laudi, E, Laurenti, G, Lazzizzera, I, Lebedev, A, Lee, H, Lee, S, Leluc, C, Li, H, Li, J, Li, Q, Li, T, Li, Y, Li, Z, Lim, S, Lin, C, Lipari, P, Lippert, T, Liu, D, Liu, H, Lordello, V, Lu, S, Lu, Y, Luebelsmeyer, K, Luo, F, Luo, J, Lyu, S, Machate, F, Mañá, C, Marín, J, Martin, T, Martínez, G, Masi, N, Maurin, D, Menchaca-Rocha, A, Meng, Q, Mikuni, V, Mo, D, Mott, P, Nelson, T, Ni, J, Nikonov, N, Nozzoli, F, Oliva, A, Orcinha, M, Palermo, M, Palmonari, F, Palomares, C, Paniccia, M, Pauluzzi, M, Pensotti, S, Perrina, C, Phan, H, Picot-Clemente, N, Pilo, F, Pizzolotto, C, Plyaskin, V, Pohl, M, Poireau, V, Quadrani, L, Qi, X, Qin, X, Qu, Z, Räihä, T, Rancoita, P, Rapin, D, Ricol, J, Rosier-Lees, S, Rozhkov, A, Rozza, D, Sagdeev, R, Schael, S, Schmidt, S, Schulz von Dratzig, A, Schwering, G, Seo, E, Shan, B, Shi, J, Siedenburg, T, Son, D, Song, J, Tacconi, M, Tang, X, Tang, Z, Tescaro, D, Ting, S, Tomassetti, N, Torsti, J, Türkoğlu, C, Urban, T, Vagelli, V, Valente, E, Valtonen, E, Vázquez Acosta, M, Vecchi, M, Velasco, M, Vialle, J, Vitale, V, Wang, L, Wang, N, Wang, Q, Wang, X, Wang, Z, Wei, C, Weng, Z, Whitman, K, Wu, H, Wu, X, Xiong, R, Xu, W, Yan, Q, Yang, J, Yang, M, Yang, Y, Yi, H, Yu, Y, Yu, Z, Zannoni, M, Zeissler, S, Zhang, C, Zhang, F, Zhang, J, Zhang, S, Zhang, Z, Zheng, Z, Zhuang, H, Zhukov, V, Zichichi, A, Zimmermann, N, and Zuccon, P
- Subjects
Space experiments ,General Physics and Astronomy ,primary [cosmic radiation] ,Astrophysics ,01 natural sciences ,Power law ,Rigidity (electromagnetism) ,ddc:550 ,Alpha Magnetic Spectrometer ,AMS ,010303 astronomy & astrophysics ,Alpha magnetic spectrometers ,Physics ,Spectrometers ,ratio [flux] ,secondary [cosmic radiation] ,FIS/01 - FISICA SPERIMENTALE ,lithium ,Beryllium ,Astrophysics and Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,satellite ,chemistry.chemical_element ,Cosmic ray ,ddc:500.2 ,Astrophysics::Cosmology and Extragalactic Astrophysics ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Physics and Astronomy (all) ,Secondary cosmic-rays ,Cosmic rays nuclei ,0103 physical sciences ,International Space Station ,ddc:530 ,010306 general physics ,Boron ,cosmic radiation: secondary ,Cosmic rays ,Cosmic.-ray propagation ,ta115 ,ISS ,carbon ,nucleus ,ASTROFÍSICA ,Space stations ,beryllium ,magnetic spectrometer ,Flux ratio ,flux: ratio ,cosmic radiation: primary ,chemistry ,boron ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,oxygen - Abstract
Physical review letters 120(2), 021101 (2018). doi:10.1103/PhysRevLett.120.021101, Published by APS, College Park, Md.
- Published
- 2018
30. Physical Performance of GAMMA-400 Telescope. Angular Resolution, Proton and Electron Separation
- Author
-
Alexey Leonov, V. V. Mikhailov, M. F. Runtso, A.I. Arkhangelskiy, M. D. Kheymits, А.М. Galper, N. P. Topchiev, P. Y. u. Naumov, V. V. Kadilin, I. V. Arkhangelskaja, Yu. V. Gusakov, Yu. T. Yurkin, S. I. Suchkov, and V. G. Zverev
- Subjects
Physics ,Proton ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,Gamma ray ,X-ray telescope ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Physics and Astronomy(all) ,gamma-ray telescope ,law.invention ,gamma rays ,Telescope ,cosmic rays ,law ,hadron and electromagnetic showers ,Angular resolution ,space experiments ,Fermi Gamma-ray Space Telescope - Abstract
The specially designed GAMMA-400 gamma-ray telescope will realize the measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following broad range of scientific topics. Search for signatures of dark matter, investigation of gamma-ray point and extended sources, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the active Sun, as well as high-precision measurements of spectra of high-energy electrons and positrons, protons, and nuclei up to the knee. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution ∼1% and angular resolution better than 0.02 deg. The methods, developed to reconstruct the direction of incident gamma photon, are presented in this paper, as well as, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is discussed.
- Published
- 2015
31. GAMMA-400 Space Gamma-telescope Mathematical Model with Engineering Elements Included
- Author
-
Yu. T. Yurkin, M. D. Kheymits, A.A. Perfil‘ev, E. N. Chasovikov, A.I. Arkhangelskiy, I. V. Arkhangelskaja, Yu. V. Gusakov, N. P. Topchiev, and A. M. Galper
- Subjects
Physics ,Scintillation ,Engineering drawing ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Geant4 ,Physics and Astronomy(all) ,gamma-ray telescope ,law.invention ,Telescope ,gamma rays ,Theoretical physics ,Software ,Development (topology) ,cosmic rays ,Technical drawing ,law ,hadron and electromagnetic showers ,business ,space experiments ,Energy (signal processing) ,mathematical model ,Fermi Gamma-ray Space Telescope - Abstract
Mathematical model creation is a necessary stage in scientific apparatus development. The mathematical model of gamma-ray telescope GAMMA-400 is used to emulate transport of various elementary particles through the apparatus. The new iteration of the model is based on precise technical drawings and includes all the elements of the real gamma-telescope. It is created in Geant4 environment. This model allows calculation of energy deposition not only in detectors, but in any part of the apparatus, including construction elements. Moreover, it supports creation of virtual sensitive volumes, allowing determination of the number and properties of particles passing through an arbitrary part of the construction. Software for automated creation of Geant4 model based on technical drawings in STEP 3D Model format was developed. This software is capable of making models of other apparatus based particularly on scintillation and strip detectors.
- Published
- 2015
- Full Text
- View/download PDF
32. Science of Mini-EUSO detector on board the International Space Station
- Author
-
Casolino, M., Belov, A., Bertaina, M., Cambie, G., Capel, Francesca, Ebisuzaki, T., Klimov, P., Panasyuk, M., Picozza, P., Ricci, M., collaboration, JEM-EUSO, Casolino, M., Belov, A., Bertaina, M., Cambie, G., Capel, Francesca, Ebisuzaki, T., Klimov, P., Panasyuk, M., Picozza, P., Ricci, M., and collaboration, JEM-EUSO
- Abstract
The Mini-EUSO space experiment ("UV atmosphere" in Russian Space Program) is a telescope designed to perform observations of night-time Earth in the UV spectrum. The instrument comprises a compact telescope with a large field of view (44°x44°), based on an optical system employing two 25 cm diameter Fresnel lenses (focal length ∼ 30 cm) for increased light collection. Mini-EUSO will study different scientific phenomena ranging from strange quark matter and Ultra High Energy Cosmic Rays (UHECRs) to bioluminescence and atmospheric physics. It will also create the first night-time map of the Earth in UV light. The mission will raise the technology readiness level (TRL) of the future JEM-EUSO missions to observe UHECRs from space. The Mini-EUSO measurements will be performed from the ISS through a UV transparent window in the Russian Zvezda Service Module. Launch is foreseen between Autumn 2017 and beginning 2018 in the framework of the next manned ASI (Italian Space Agency) flight and observations are supposed to continue with Russian cosmonauts for several years., QC 20181214
- Published
- 2017
- Full Text
- View/download PDF
33. Cosmic-ray lithium and beryllium isotopes in the PAMELA-experiment
- Author
-
Menn, W., Bogomolov, E. A., Simon, M., Vasilyev, G. I., Adriani, O., Barbarino, G. C., Bazilevskaya, G. A., Bellotti, R., Boezio, M., Bongi, M., Bonvicini, V., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carlson, Per, Casolino, M., Castellini, G., De Donato, C., De Santis, C., Di Felice, V., Galper, A. M., Karelin, A. V., Koldashov, S. V., Koldobskiy, S., Krutkov, S. Y., Kvashnin, A. N., Leonov, A., Malakhov, V., Marcelli, L., Martucci, M., Mayorov, A. G., Merge, M., Mikhailov, V. V., Mocchiutti, E., Monaco, A., Mori, N., Munini, R., Osteria, G., Papini, P., Panico, B., Pearce, M., Picozza, P., Ricci, M., Ricciarini, S. B., Sparvoli, R., Spillantini, P., Stozhkov, Y. I., Vacchi, A., Vannuccini, E., Voronov, S. A., Yurkin, Y. T., Zampa, G., Zampa, N., Menn, W., Bogomolov, E. A., Simon, M., Vasilyev, G. I., Adriani, O., Barbarino, G. C., Bazilevskaya, G. A., Bellotti, R., Boezio, M., Bongi, M., Bonvicini, V., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carlson, Per, Casolino, M., Castellini, G., De Donato, C., De Santis, C., Di Felice, V., Galper, A. M., Karelin, A. V., Koldashov, S. V., Koldobskiy, S., Krutkov, S. Y., Kvashnin, A. N., Leonov, A., Malakhov, V., Marcelli, L., Martucci, M., Mayorov, A. G., Merge, M., Mikhailov, V. V., Mocchiutti, E., Monaco, A., Mori, N., Munini, R., Osteria, G., Papini, P., Panico, B., Pearce, M., Picozza, P., Ricci, M., Ricciarini, S. B., Sparvoli, R., Spillantini, P., Stozhkov, Y. I., Vacchi, A., Vannuccini, E., Voronov, S. A., Yurkin, Y. T., Zampa, G., and Zampa, N.
- Abstract
The PAMELA space experiment was launched on the 15th of June 2006 from the Baikonur cosmodrome. The scientific objectives addressed by the mission are the measurement of the antiprotons and positrons spectra in cosmic rays, the hunt for antinuclei as well as the determination of light nuclei fluxes from hydrogen to oxygen in a wide energy range and with high statistics. The apparatus comprises a time-of-flight system, a magnetic spectrometer (permanent magnet) with an silicon-microstrip tracking system, an imaging calorimeter built from layers of siliconmicrostrip detectors interleaved with plates of tungsten, an anti-coincidence system, a shower tail scintillator-counter and a neutron detector. The instrument in its detector-combination is also capable to identify isotopes, using the rigidity information from the magnetic spectrometer together with the time-of-flight measurement or with the multiple dE/dx measurement in the calorimeter. In this paper details about the analysis method and new results of the isotopic ratios of lithium and beryllium with increased statistics will be presented., QC 20181221
- Published
- 2017
34. Preservation of Raman biosignatures in cyanobacteria and green algae after space exposure
- Author
-
Baque, Mickael, Böttger, Ute, Leya, Thomas, and de Vera, Jean Pierre Paul
- Subjects
BIOMEX ,Leitungsbereich PF ,Raman spectroscopy ,carotenoids ,Biosignatures ,Terahertz- und Laserspektroskopie ,space experiments ,cyanobacteria ,green algae - Abstract
The BIOMEX (BIOlogy and Mars EXperiment) experiment aims at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions in the presence of Martian mineral analogues (de Vera et al. 2012). To this end, extensive ground-based simulation studies and a space experiment were performed. Indeed, BIOMEX was part of the EXPOSE-R2 mission of the European Space Agency which allowed a 15-month exposure, on the outside of the International Space Station, of four astrobiology experiments between July 2014 and February 2016. The preservation and evolution of Raman biosignatures under real space conditions is of particular interest for guiding future search-for-life missions to Mars (and other planetary objects) carrying Raman spectrometers (such as the Raman Laser Spectrometer instrument on board the future ExoMars rover). Among the potential biosignatures investigated, the photoprotective carotenoid pigments (present either in photosynthetic organisms such as plants, algae, cyanobacteria and in some bacteria and archaea) have been classified as high priority targets for biomolecule detection on Mars and therefore used as biosignature models due to their stability and easy identification by Raman spectroscopy (Böttger et al. 2012). We report here on the first results from the analysis of two carotenoids containing organisms: the cyanobacterium Nostoc sp. (strain CCCryo 231-06; = UTEX EE21 and CCMEE 391) isolated from Antarctica and the green alga cf. Sphaerocystis sp. (strain CCCryo 101-99) isolated from Spitsbergen. Desiccated cells of these organisms were exposed to space and simulated Mars-like conditions in space in the presence of two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) and a Lunar regolith analogue and analyzed with a 532nm Raman microscope at 1mW laser power. Carotenoids in both organisms were surprisingly still detectable at relatively high levels after being exposed for 15 months in Low Earth Orbit to UV, cosmic rays, vacuum (or Mars-like atmosphere) and temperatures stresses regardless of the mineral matrix used. Further analyses will help us to correlate these results with survival potential, cellular damages or stability and the different extremophiles tested in the BIOMEX experiment.
- Published
- 2017
35. Preservation of carotenoids in cyanobacteria and green algae after space exposure: a potential biosignature detectable by Raman instruments on Mars
- Author
-
Baque, Mickael, Böttger, Ute, Leya, Thomas, and de Vera, Jean Pierre Paul
- Subjects
BIOMEX ,Leitungsbereich PF ,Raman spectroscopy ,carotenoids ,Biosignatures ,Terahertz- und Laserspektroskopie ,space experiments ,cyanobacteria ,green algae - Abstract
Forty years after the Viking missions, International space agencies are ready to resume the search for life on Mars (and in our Solar System). Indeed, new instruments are able to detect traces of extant or extinct life. They will be sent to Mars onboard the two next rovers: ExoMars2020 and Mars2020. Among them, instruments based on Raman spectroscopy are very promising thanks to their capacity to identify both the mineralogical context and organic molecules of potential biogenic origin. However, in order to support these future missions, it is very important to investigate the degree of preservation and the evolution of potential biosignatures under simulated and real space conditions by Raman spectroscopy. To this end, the BIOMEX (BIOlogy and Mars EXperiment) experiment aims at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions in the presence of Martian mineral analogues (de Vera et al. 2012). BIOMEX was part of the EXPOSE-R2 mission of the European Space Agency which allowed a 15-month exposure, on the outer side of the International Space Station, which comprises also three other astrobiology experiments between July 2014 and February 2016. Among the potential biosignatures investigated, the photoprotective carotenoid pigments (present either in photosynthetic organisms such as plants, algae, cyanobacteria and in some bacteria and archaea) have been classified as high priority targets for biomolecule detection on Mars and therefore used as a model biosignature due to their stability and easy identification by Raman spectroscopy (Böttger et al. 2012). We report here on the first results from the analysis of two carotenoids containing organisms: the cyanobacterium Nostoc sp. (strain CCCryo 231-06; = UTEX EE21 and CCMEE 391) isolated from Antarctica and the green alga cf. Sphaerocystis sp. (strain CCCryo 101-99) isolated from Spitsbergen. Desiccated cells of these organisms were exposed to space conditions and to simulated Mars-like conditions in space. They were cultured on Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) and a Lunar regolith analogue and analyzed with a 532nm Raman spectroscope operating at 1mW laser power. Carotenoids in both organisms were surprisingly still detectable at relatively high levels after being exposed for 15 months in Low Earth Orbit to UV, cosmic rays, vacuum (or Mars-like atmosphere) and temperatures stresses regardless of the mineral matrix used. Further analyses will help us to correlate these results with survival potential, cellular damages or stability and the different extremophiles tested in the BIOMEX experiment.
- Published
- 2017
36. The DArk Matter Particle Explorer mission
- Author
-
M. M. Ma, Y.L. Xin, Shengxia Zhang, Y. Y. Huang, Y. Z. Gong, H.Y. Zhao, P. Fusco, Zhao-Qiang Shen, Peidong Yang, Zhao-Min Wang, Yuan Zhu Wang, Maria Ionica, Jie Kong, Yun Long Zhang, F. Loparco, Dan Jiang, J.N. Dong, Y. L. Li, X. Y. Peng, J. L. Chen, H. S. Chen, S. C. Wen, Y. F. Dong, Jinglai Duan, P. Azzarello, N. H. Liao, X. L. Wang, M. M. Salinas, M. Caragiulo, Ya Peng Zhang, M. Pohl, V. Gallo, W. Zhang, Andrii Tykhonov, Niu Xiaoyang, Hai Tao Xu, X. X. Li, Shi-Jun Lei, G. Marsella, Wei Jiang, Min Gao, M. S. Cai, X. Zhu, Z. X. Dong, Yong Zhou, S. Y. Ma, Wei Liang Li, A. De Benedittis, Q. An, Sha Wu, Deng Yi Chen, Y. F. Wei, J.B. Zhang, T.T. Miao, G. F. Xue, Chuan Yue, Z.L. Yang, Y.F. Liang, P. Bernardini, Yifan Yang, Laiyu Zhang, Jianyi Yang, W. X. Peng, Z. M. Zhang, Giacinto Donvito, L. G. Wang, J. G. Lu, Y. J. Zhang, R. Qiao, Shan-Shan Gao, Zi-Qing Xia, Hui Jun Yao, Zhi-Yu Sun, Fang Fang, Yi-Zhong Fan, S. Vitillo, Jie Liu, S. Li, J. J. Wei, R. R. Fan, Lei Feng, Y. Zhu, K. Xi, A. D'Amone, Peng-Xiong Ma, Ping Zhang, Xun Feng Zhao, Jianli Zhang, M. N. Mazziotta, H. Su, Di Wu, Y. M. Hu, Da Ming Wei, Chang Yi Zhou, A. Surdo, Yang Liu, Yen-Po Wang, D. Droz, D. D'Urso, W. Chen, Jian Wu, Jin Zhou Wang, F. Zhang, Q. Wang, Jian Hua Guo, M. Duranti, X. J. Teng, Tie-Kuang Dong, I. De Mitri, Xiao Yong Ma, W. H. Shen, X.B. Tian, Chao Zhang, Z. T. Shen, Hong Yun Zhao, Z. Xu, Chang Qing Feng, T. S. Cui, Chunjie Wang, Ju-Xian Song, G. Ambrosi, Q.Z. Liu, Xiaohui Wang, Haiyan Wang, Y. Zhang, X.Q. Ma, Meng Su, D. Mo, Yan Fang Wang, R. Asfandiyarov, Yao Ming Liang, B. Bertucci, Stephan Zimmer, Guang Shun Huang, Yang Haibo, X. Jin, Zhenyu Zhang, M. Di Santo, Tao Ma, Xin Wu, M. Y. Cui, Yongjie Zhang, Yu-Hong Yu, H. Liu, J. N. Rao, Qiang Yuan, S. B. Liu, Jilong Zhang, Chi Wang, W.Q. Gan, Wenqiang Liu, V. Vagelli, Zi Zong Xu, Jin Chang, F. J. Gan, F. Gargano, D.L. Zhang, H. W. Wang, Kai-Kai Duan, K. Gong, G. Z. Shang, Shu Xin Wang, J. J. Zang, Chang, J., Ambrosi, G., An, Q., Asfandiyarov, R., Azzarello, P., Bernardini, P., Bertucci, B., Cai, M. S., Caragiulo, M., Chen, D. Y., Chen, H. F., Chen, J. L., Chen, W., Cui, M. Y., Cui, T. S., D'Amone, A., DE BENEDITTIS, Antonio, De Mitri, I., DI SANTO, Margherita, Dong, J. N., Dong, T. K., Dong, Y. F., Dong, Z. X., Donvito, G., Droz, D., Duan, K. K., Duan, J. L., Duranti, M., D'Urso, D., Fan, R. R., Fan, Y. Z., Fang, F., Feng, C. Q., Feng, L., Fusco, P., Gallo, V., Gan, F. J., Gan, W. Q., Gao, M., Gao, S. S., Gargano, F., Gong, K., Gong, Y. Z., Guo, J. H., Hu, Y. M., Huang, G. S., Huang, Y. Y., Ionica, M., Jiang, D., Jiang, W., Jin, X., Kong, J., Lei, S. J., Li, S., Li, X., Li, W. L., Li, Y., Liang, Y. F., Liang, Y. M., Liao, N. H., Liu, Q. Z., Liu, H., Liu, J., Liu, S. B., Liu, W. Q., Liu, Y., Loparco, F., Lã¼, J., Ma, M., Ma, P. X., Ma, S. Y., Ma, T., Ma, X. Q., Ma, X. Y., Marsella, G., Mazziotta, M. N., Mo, D., Miao, T. T., Niu, X. Y., Pohl, M., Peng, X. Y., Peng, W. X., Qiao, R., Rao, J. N., Salinas, M. M., Shang, G. Z., Shen, W. H., Shen, Z. Q., Shen, Z. T., Song, J. X., Su, H., Su, M., Sun, Z. Y., Surdo, A., Teng, X. J., Tian, X. B., Tykhonov, A., Vagelli, V., Vitillo, S., Wang, C., Wang, Chi, Wang, H., Wang, H. Y., Wang, J. Z., Wang, L. G., Wang, Q., Wang, S., Wang, X. H., Wang, X. L., Wang, Y. F., Wang, Y. P., Wang, Y. Z., Wen, S. C., Wang, Z. M., Wei, D. M., Wei, J. J., Wei, Y. F., Wu, D., Wu, J., Wu, S. S., Wu, X., Xi, K., Xia, Z. Q., Xin, Y. L., Xu, H. T., Xu, Z. L., Xu, Z. Z., Xue, G. F., Yang, H. B., Yang, J., Yang, P., Yang, Y. Q., Yang, Z. L., Yao, H. J., Yu, Y. H., Yuan, Q., Yue, C., Zang, J. J., Zhang, C., Zhang, D. L., Zhang, F., Zhang, J. B., Zhang, J. Y., Zhang, J. Z., Zhang, L., Zhang, P. F., Zhang, S. X., Zhang, W. Z., Zhang, Y., Zhang, Y. J., Zhang, Y. Q., Zhang, Y. L., Zhang, Y. P., Zhang, Z., Zhang, Z. Y., Zhao, H., Zhao, H. Y., Zhao, X. F., Zhou, C. Y., Zhou, Y., Zhu, X., Zhu, Y., Zimmer, S., DE BENEDITTIS, ANTONIO, DI SANTO, MARGHERITA, and Lü, J.
- Subjects
Physics - Instrumentation and Detectors ,Satellite launches ,Gamma ray observatories ,Astrophysics ,Galactic cosmic rays ,01 natural sciences ,Cosmology ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Observatory ,Detectors and Experimental Techniques ,Cosmic rays , dark matter , space experiments ,010303 astronomy & astrophysics ,physics.ins-det ,Space science missions ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Cosmology, Galaxies, Gamma rays, Tellurium compounds, Chinese Academy of Sciences, Dark matter particles, Explorer missions, Galactic cosmic rays, Gamma ray observatories, Satellite launches, Scientific objectives, Space science missions, Cosmic rays ,Space Science ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Particle Physics - Experiment ,Astrophysics and Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,FOS: Physical sciences ,Cosmic ray ,dark matter ,Tellurium compounds ,0103 physical sciences ,Cosmic rays ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010308 nuclear & particles physics ,hep-ex ,Gamma rays ,Astronomy ,Astronomy and Astrophysics ,Galaxies ,Chinese academy of sciences ,Galaxy ,Scientific objectives ,Dark matter particles ,Chinese Academy of Sciences ,Satellite ,space experiments ,Explorer missions ,astro-ph.IM - Abstract
The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $\sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals., 45 pages, including 29 figures and 6 tables. Published in Astropart. Phys
- Published
- 2017
37. BIOMEX on EXPOSE-R2: First results on the preservation of Raman biosignatures after space exposure
- Author
-
Baque, Mickael, Böttger, Ute, Leya, Thomas, and de Vera, Jean Pierre Paul
- Subjects
BIOMEX ,Leitungsbereich PF ,Raman spectroscopy ,Biosignatures ,Terahertz- und Laserspektroskopie ,space experiments - Abstract
After a 15-month exposure onboard the EXPOSE-R2 space platform, situated on the outside of the International Space Station, four astrobiology experiments successfully came back to Earth in March and June 2016. Among them, the BIOMEX (BIOlogy and Mars EXperiment) experiment aims at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions in the presence of Martian mineral analogues [1]. The preservation and evolution of Raman biosignatures under such conditions is of particular interest for guiding future search-for-life missions to Mars (and other planetary objects) carrying Raman spectrometers (such as the Raman Laser Spectrometer instrument on board the future ExoMars rover). The photoprotective carotenoid pigments (present either in photosynthetic organisms such as plants, algae, cyanobacteria and in some bacteria and archaea) have been classified as high priority targets for biomolecule detection on Mars and therefore used as biosignature models due to their stability and easy identification by Raman spectroscopy [2]. We report here on the first results from the analysis of two carotenoids containing organisms: the cyanobacterium Nostoc sp. (strain CCCryo 231-06; = UTEX EE21 and CCMEE 391) isolated from Antarctica and the green alga cf. Sphaerocystis sp. (strain CCCryo 101-99) isolated from Spitsbergen. Desiccated cells of these organisms were exposed to space and simulated Mars-like conditions in space in the presence of two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) and a Lunar regolith analogue and analyzed with a 532nm Raman microscope at 1mW laser power. Carotenoids in both organisms were surprisingly still detectable at relatively high levels after being exposed for 15 months in Low Earth Orbit to UV, cosmic rays, vacuum (or Mars-like atmosphere) and temperatures stresses regardless of the mineral matrix used. Further analyses will help us to correlate these results with survival potential, cellular damages or stability and the different extremophiles tested in the BIOMEX experiment.
- Published
- 2017
38. What do we learn from microbiological space experiments?
- Author
-
Moeller, R.
- Subjects
Strahlenbiologie ,fungi ,microbiology ,astrobiology ,space experiments - Abstract
The vast, cold, and radiation-filled conditions of outer space present an environmental challenge for any form of life. The majority of experiments on microorganisms in space were performed using Earth orbiting robotic spacecraft, or human-tended spacecraft, and space stations, e.g. the International Space Station (ISS). The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In a variety of space experiments, spores of Bacillus subtilis have been used as valuable biological test organisms. Spores of the gram-positive bacterium B. subtilis are highly resistant to inactivation by environmental stresses, such as biocidal agents and toxic chemicals, desiccation, pressure and temperature extremes, and high fluences of UV radiation and are a powerful biodosimetric system for terrestrial environmental monitoring and astrobiological studies. Onboard several spacecraft, e.g. Apollo 16, Spacelab 1, LDEF, D2, FOTON, spores of B. subtilis were exposed to selected parameters of space, such as space vacuum and different spectral ranges of solar UV-radiation and cosmic rays, applied separately or in combination (Horneck et al. [2010]). Bacterial endospores have since been recognized as the hardiest known form of life on Earth, and considerable effort has been invested in understanding the molecular mechanisms responsible for the almost unbelievable resistance of spores to environments which exist at (and beyond) the physical extremes which can support terrestrial life (Nicholson [2009]). Endospores (or spores for convenience) of Bacillus sp. are ubiquitous and can be isolated in almost every niche in nature and they are relocated spatially via wind, water, living hosts, etc., to environments potentially favorable for germination and resumption of vegetative growth. As a result, Bacillus species and their spores can be found in environmental samples obtained from all parts of the Earth, both above (bacterial spores were collected at high altitudes up to 77 km) and below (spores of Bacillus infernus were isolated from ca. 2700 m below the land surface) the surface, and as such represent a highly successful strategy for the survival and widespread dispersal of microbial life. Dormant spores exhibit incredible longevity, reliable reports exist of the recovery and revival of spores from environmental samples (i.e. lake sediments) as old as 100 000 years or even elder. Because of their high resistance to environmental extremes and their reported longevity bacterial spores have also been suggested as ideal test system for studying the “Lithopanspermia” theory, the hypothetical transfer of (microbial) life between the planets of our Solar System via meteorites (Mileikowsky et al. [2000]). In this seminar talk, I will present data and information on the survival, molecular mechanisms and potential transport of bacterial spores in space (from one planet to another) in support of the “Lithopanspermia” theory and give an outlook of the ongoing and future space microbiology/astrobiology activities of the DLR.
- Published
- 2017
39. 16 – Bioassays for solar UV radiation
- Author
-
Häder, Donat-P. and Horneck, Gerda
- Subjects
DNA ,UV Radiation ,space experiments ,Bioassays ,biofilm ,Bacillus subtilis - Published
- 2017
40. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons
- Author
-
J. N. Rao, D. M. Wei, P. Azzarello, Peng-Xiong Ma, Y. H. Yu, Shan-Shan Gao, Chi Wang, Q. An, L. G. Wang, YM Liang, Dong Ya Guo, Min Gao, Z. X. Dong, Jie Liu, Tianxiao Ma, Donghong Chen, Wei Liu, Yifan Yang, Zhihua Zhang, Jun-jun Guo, Y. F. Liang, S. Wang, Huan Zhao, D.L. Zhang, X.Q. Ma, Maria Ionica, Jie Kong, G. Ambrosi, Luzhao Feng, Yu-Sa Wang, Fang Fang, N. H. Liao, D. Mo, Niu Xiaoyang, Yaping Wang, R. Qiao, Qiuju Yuan, I. De Mitri, X.B. Tian, Z. Z. Xu, Zheng Wang, Michael Ma, R. Asfandiyarov, X. X. Li, Y. M. Hu, M. S. Cai, Guangshun Huang, M. Di Santo, H. Liu, J.N. Dong, Z.-Q. Shen, Zhongjie Yang, W. X. Peng, Peidong Yang, Jialong Chen, Stephan Zimmer, Y. F. Wei, K. Xi, Laiyu Zhang, Zhi-Yu Sun, W. Li, F. Loparco, X. L. Wang, Chao Zhang, Y. J. Zhang, Y. Z. Gong, Jindong Zhang, X. Y. Ma, M. Duranti, Kai-Kai Duan, Y. Zhang, Yun-Zhi Zhang, R. R. Fan, Valerio Vagelli, Xixian Wang, Ju-Xian Song, G. Marsella, Meng Su, Yaohui Zhang, Xian-Min Jin, S.X. Li, S. B. Liu, Huijun Yao, Andrii Tykhonov, J. J. Wei, Lihui Wu, X. Y. Peng, H. T. Xu, Yujuan Liu, Hong Yun Zhao, Jie Zhang, S. Y. Ma, Z. Q. Xia, Dan Jiang, Yali Zhou, X. J. Teng, Tie-Kuang Dong, S. C. Wen, Y. Li, A. D'Amone, Yi-Zhong Fan, K. Gong, J. Z. Wang, Yugang Zhang, H. S. Chen, Chengrui Zhou, Giacinto Donvito, Yang Haibo, Zhoubin Zhang, P. Bernardini, W. H. Shen, M. Y. Cui, G. Z. Shang, Chuan Yue, Jindan Zhang, Di Wu, Xin-Fu Zhao, Y. Y. Huang, Z. T. Shen, Qian Wang, P. Fusco, Shumei Wu, J. J. Zang, Y. F. Dong, Jinfei Wu, C. Q. Feng, Jinglai Duan, Huaguang Wang, B. Bertucci, Jin Chang, F. J. Gan, F. Gargano, M. N. Mazziotta, H. Su, Haiqiong Wang, Fengtao Zhang, Z. Xu, Pengchao Zhang, Xin Wu, Y. F. Wang, S. Vitillo, D. Droz, T. S. Cui, V. Gallo, W. Zhang, Wei Jiang, G. F. Xue, S. Garrappa, Yu-Xuan Zhu, D. D'Urso, Shi-Jun Lei, M. M. Salinas, Y.L. Xin, Xi Zhu, Shengxia Zhang, A. Surdo, A. De Benedittis, Wangli Chen, Ambrosi, G., An, Q., Asfandiyarov, R., Azzarello, P., Bernardini, P., Bertucci, B., Cai, M. S., Chang, J., Chen, D. Y., Chen, H. F., Chen, J. L., Chen, W., Cui, M. Y., Cui, T. S., D’Amone, A., De Benedittis, A., De Mitri, I., Di Santo, M., Dong, J. N., Dong, T. K., Dong, Y. F., Dong, Z. X., Donvito, G., Droz, D., Duan, K. K., Duan, J. L., Duranti, M., D’Urso, D., Fan, R. R., Fan, Y. Z., Fang, F., Feng, C. Q., Feng, L., Fusco, P., Gallo, V., Gan, F. J., Gao, M., Gao, S. S., Gargano, F., Garrappa, S., Gong, K., Gong, Y. Z., Guo, D. Y., Guo, J. H., Hu, Y. M., Huang, G. S., Huang, Y. Y., Ionica, M., Jiang, D., Jiang, W., Jin, X., Kong, J., Lei, S. J., Li, S., Li, X., Li, W. L., Li, Y., Liang, Y. F., Liang, Y. M., Liao, N. H., Liu, H., Liu, J., Liu, S. B., Liu, W. Q., Liu, Y., Loparco, F., Ma, M., Ma, P. X., Ma, S. Y., Ma, T., Ma, X. Q., Ma, X. Y., Marsella, G., Mazziotta, M. N., Mo, D., Niu, X. Y., Peng, X. Y., Peng, W. X., Qiao, R., Rao, J. N., Salinas, M. M., Shang, G. Z., H. Shen, W., Shen, Z. Q., Shen, Z. T., Song, J. X., Su, H., Su, M., Sun, Z. Y., Surdo, A., Teng, X. J., Tian, X. B., Tykhonov, A., Vagelli, V., Vitillo, S., Wang, C., Wang, H., Wang, H. Y., Wang, J. Z., Wang, L. G., Wang, Q., Wang, S., Wang, X. H., Wang, X. L., Wang, Y. F., Wang, Y. P., Wang, Y. Z., Wen, S. C., Wang, Z. M., Wei, D. M., Wei, J. J., Wei, Y. F., Wu, D., Wu, J., Wu, L. B., Wu, S. S., Wu, X., Xi, K., Xia, Z. Q., Xin, Y. L., Xu, H. T., Xu, Z. L., Xu, Z. Z., Xue, G. F., Yang, H. B., Yang, P., Yang, Y. Q., Yang, Z. L., Yao, H. J., Yu, Y. H., Yuan, Q., Yue, C., Zang, J. J., Zhang, C., Zhang, D. L., Zhang, F., Zhang, J. B., Zhang, J. Y., Zhang, J. Z., Zhang, L., Zhang, P. F., Zhang, S. X., Zhang, W. Z., Zhang, Y., Zhang, Y. J., Zhang, Y. Q., Zhang, Y. L., Zhang, Y. P., Zhang, Z., Zhang, Z. Y., Zhao, H., Zhao, H. Y., Zhao, X. F., Zhou, C. Y., Zhou, Y., Zhu, X., Zhu, Y., and Zimmer, S.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,FOS: Physical sciences ,Cosmic ray ,Electron ,01 natural sciences ,dark matter ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,Positron ,cosmic rays ,0103 physical sciences ,010303 astronomy & astrophysics ,Cherenkov radiation ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,cosmic rays , dark matter , electrons , space experiments ,Multidisciplinary ,Annihilation ,010308 nuclear & particles physics ,Settore FIS/01 - Fisica Sperimentale ,Spectrum (functional analysis) ,electrons ,Galaxy ,High Energy Physics - Phenomenology ,High Energy Physics::Experiment ,space experiments ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
High energy cosmic ray electrons plus positrons (CREs), which lose energy quickly during their propagation, provide an ideal probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been directly measured up to $\sim 2$ TeV in previous balloon- or space-borne experiments, and indirectly up to $\sim 5$ TeV by ground-based Cherenkov $\gamma$-ray telescope arrays. Evidence for a spectral break in the TeV energy range has been provided by indirect measurements of H.E.S.S., although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the energy range $25~{\rm GeV}-4.6~{\rm TeV}$ by the DArk Matter Particle Explorer (DAMPE) with unprecedentedly high energy resolution and low background. The majority of the spectrum can be properly fitted by a smoothly broken power-law model rather than a single power-law model. The direct detection of a spectral break at $E \sim0.9$ TeV confirms the evidence found by H.E.S.S., clarifies the behavior of the CRE spectrum at energies above 1 TeV and sheds light on the physical origin of the sub-TeV CREs., Comment: 18 pages, 6 figures, Nature in press, doi:10.1038/nature24475
- Published
- 2017
41. Survival of Spores ofTrichoderma longibrachiatumin Space: data from the Space Experiment SPORES on EXPOSE-R
- Author
-
Corinna Panitz, Gerda Horneck, A. Lux-Endrich, and Katja Neuberger
- Subjects
Physics ,Physics and Astronomy (miscellaneous) ,Trichoderma longibrachiatum ,Analytical chemistry ,Cosmic ray ,Radiation ,medicine.disease_cause ,International Space Station ,Spore ,Atmosphere ,Space and Planetary Science ,Germination ,fungal spores ,Earth and Planetary Sciences (miscellaneous) ,medicine ,Irradiation ,space experiments ,lithopanspermia ,Ecology, Evolution, Behavior and Systematics ,Ultraviolet ,Remote sensing - Abstract
In the space experiment ‘Spores in artificial meteorites’ (SPORES), spores of the fungusTrichoderma longibrachiatumwere exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10−7–10−4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m−2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from −25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.
- Published
- 2014
42. The PAMELA experiment and cosmic ray observations
- Author
-
G. Castellini, P. Spillantini, Mirko Boezio, Alexey Leonov, Roberto Bellotti, A. M. Galper, Ritabrata Sarkar, N. Zampa, G. A. Bazilevskaya, G. Zampa, Beatrice Panico, A. N. Kvashnin, Matteo Martucci, S. Y. Krutkov, S. Bottai, F. Palma, Yu. T. Yurkin, M. Simon, Valerio Formato, M. Bongi, V. Di Felice, A. G. Mayorov, Roberta Sparvoli, P. Picozza, V. V. Malakhov, Valentina Scotti, A. V. Karelin, R. Carbone, Sergey Koldobskiy, Alfonso Monaco, G. C. Barbarino, I. A. Danilchenko, Marco Ricci, V. G. Zverev, M. Merge, O. Adriani, G. I. Vasilyev, W. Menn, E. Mocchiutti, V. V. Mikhailov, V. Bonvicini, Y. I. Stozhkov, F. Cafagna, G. Osteria, Mark Pearce, S. B. Ricciarini, Nicola Mori, C. De Santis, P. Papini, E. Vannuccini, C. De Donato, Riccardo Munini, L. Marcelli, A. Vacchi, A. Bruno, D. Campana, Marco Casolino, Sergey Koldashov, Per Carlson, N. De Simone, S. A. Voronov, E. A. Bogomolov, N., Mori, O., Adriani, G. C., Barbarino, G. A., Bazilevskaya, R., Bellotti, M., Boezio, E. A., Bogomolov, M., Bongi, V., Bonvicini, S., Bottai, A., Bruno, F., Cafagna, D., Campana, R., Carbone, P., Carlson, M., Casolino, G., Castellini, I. A., Danilchenko, C., De Donato, C., De Santi, N., De Simone, V., Di Felice, V., Formato, A. M., Galper, A. V., Karelin, S. V., Koldashov, S. A., Koldobskiy, S. Y., Krutkov, A. N., Kvashnin, A. A., Leonov, V. V., Malakhov, L., Marcelli, M., Martucci, A. G., Mayorov, W., Menn, M., Mergè, V. V., Mikhailov, E., Mocchiutti, A., Monaco, Munini, Riccardo, G., Osteria, F., Palma, B., Panico, P., Papini, M., Pearce, P., Picozza, M., Ricci, S. B., Ricciarini, M. L., Rosetto, R., Sarkar, V. M., Simon, Sparvoli, Y. I., Stozhkov, P., Vacchi, E., Vannuccini, G. I., Vasil’Ev, S. A., Voronov, Y. T., Yurkin, G., Zampa, N., Zampa, V. G., Zverev, Mori, N., Adriani, O., Barbarino, Giancarlo, Bazilevskaya, G. A., Bellotti, R., Boezio, M., Bogomolov, E. A., Bongi, M., Bonvicini, V., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carbone, R., Carlson, P., Casolino, M., Castellini, G., Danilchenko, I. A., De Donato, C., De Santis, C., De Simone, N., Di Felice, V., Formato, V., Galper, A. M., Karelin, A. V., Koldashov, S. V., Koldobskiy, S., Krutkov, S. Y., Kvashnin, A. N., Leonov, A., Malakhov, V., Marcelli, L., Martucci, M., Mayorov, A. G., Menn, W., Mergé, M., Mikhailov, V. V., Mocchiutti, E., Monaco, A., Munini, R., Osteria, G., Palma, F., Panico, B., Papini, P., Pearce, M., Picozza, P., Ricci, M., Ricciarini, S. B., Sarkar, R., Scotti, V., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y. I., Vacchi, A., Vannuccini, E., Vasilyev, G. I., Voronov, S. A., Yurkin, Y. T., Zampa, G., Zampa, N., and Zverev, V. G.
- Subjects
Physics ,Space experiments ,Range (particle radiation) ,Nuclear and High Energy Physics ,PAMELA detector ,Physics::Instrumentation and Detectors ,Cosmic rays ,Settore FIS/04 ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,law.invention ,Space experiment ,law ,Physics::Space Physics ,High Energy Physics::Experiment ,Ultra-high-energy cosmic ray ,space experiments - Abstract
The \PAMELA\ space experiment is aimed at precise measurements of the charged light component of the cosmic ray spectrum in the energy range spanning from the sub-GeV region to the TeV region, with a particular focus on antimatter. The instrument consists of a magnetic spectrometer, an electromagnetic sampling calorimeter,a time-of-flight system, an anticoincidence shield, a tail-catcher scintillator and a neutron detector. Launched in June 2006 and hosted on the Resurs-DK1 satellite, \PAMELA\ has been taking data for more than eight years, providing scientific results with unprecedented statistics and a continuous monitoring of the sun activity and the heliosphere.
- Published
- 2015
43. New Upper Limit on Strange Quark Matter Abundance in Cosmic Rays with the PAMELA Space Experiment
- Author
-
S. Y. Krutkov, Yu. T. Yurkin, V. V. Malakhov, Alexey Leonov, S. Bottai, A. G. Mayorov, V. Formato, Ritabrata Sarkar, Mark Pearce, S. B. Ricciarini, S. A. Voronov, P. Picozza, P. Papini, Valentina Scotti, E. Vannuccini, Matteo Martucci, Roberto Bellotti, G. I. Vasilyev, A. M. Galper, E. A. Bogomolov, P. Spillantini, L. Marcelli, A. Vacchi, Per Carlson, A. N. Kvashnin, C. De Donato, Mirko Boezio, M. Simon, O. Adriani, C. De Santis, A. Bruno, Sergey Koldobskiy, G. C. Barbarino, G. Castellini, Roberta Sparvoli, W. Menn, N. De Simone, Riccardo Munini, A. V. Karelin, M. Bongi, E. Mocchiutti, V. V. Mikhailov, F. Palma, G. Osteria, V. Bonvicini, Nicola Mori, Marco Ricci, Y. I. Stozhkov, N. Zampa, G. A. Bazilevskaya, G. Zampa, Beatrice Panico, V. Di Felice, F. Cafagna, Alfonso Monaco, M. Merge, D. Campana, Marco Casolino, Sergey Koldashov, O., Adriani, G. C., Barbarino, G. A., Bazilevskaya, R., Bellotti, M., Boezio, E. A., Bogomolov, M., Bongi, V., Bonvicini, S., Bottai, A., Bruno, F., Cafagna, D., Campana, P., Carlson, M., Casolino, G., Castellini, C., De Donato, C., De Santi, N., De Simone, V., Di Felice, V., Formato, A. M., Galper, A. V., Karelin, S. V., Koldashov, S. A., Koldobskiy, S. Y., Krutkov, A. N., Kvashnin, A. A., Leonov, V., Malakhov, L., Marcelli, M., Martucci, A. G., Mayorov, W., Menn, M., Mergè, V. V., Mikhailov, E., Mocchiutti, A., Monaco, N., Mori, Munini, Riccardo, G., Osteria, F., Palma, B., Panico, P., Papini, M., Pearce, P., Picozza, M., Ricci, S. B., Ricciarini, R., Sarkar, V., Scotti, V. M., Simon, Sparvoli, P., Spillantini, Y. I., Stozhkov, P., Vacchi, E., Vannuccini, G. I., Vasilyev, S. A., Voronov, Y. T., Yurkin, G., Zampa, N., Zampa, Adriani, O, Barbarino, Giancarlo, Bazilevskaya, G. A, Bellotti, R, Boezio, M, Bogomolov, E. A, Bongi, M, Bonvicini, V, Bottai, S, Bruno, A, Cafagna, F, Campana, D, Carlson, P, Casolino, M, Castellini, G, De Donato, C, De Santis, C, De Simone, N, Di Felice, V, Formato, V, Galper, A. M, Karelin, A. V, Koldashov, S. V, Koldobskiy, S, Krutkov, S. Y, Kvashnin, A. N, Leonov, A, Malakhov, V, Marcelli, L, Martucci, M, Mayorov, A. G, Menn, W, Mergè, M, Mikhailov, V. V, Mocchiutti, E, Monaco, A, Mori, N, Munini, R, Osteria, G, Palma, F, Panico, B, Papini, P, Pearce, M, Picozza, P, Ricci, M, Ricciarini, S. B, Sarkar, R, Scotti, V, Simon, M, Sparvoli, R, Spillantini, P, Stozhkov, Y. I, Vacchi, A, Vannuccini, E, Vasilyev, G, Voronov, S. A, Yurkin, Y. T, Zampa, G, and Zampa, N.
- Subjects
Physics ,Quark matter ,Space experiments ,Cosmic rays ,Spectrometers ,Strange quark ,PAMELA, Cosmic rays, Strange matter ,PAMELA detector ,Strangelet ,Astrophysics::High Energy Astrophysical Phenomena ,Settore FIS/01 - Fisica Sperimentale ,General Physics and Astronomy ,Cosmic ray ,Astrophysics ,law.invention ,Physics and Astronomy (all) ,Strange matter ,Rigidity (electromagnetism) ,Quark star ,law ,PAMELA ,State of matter - Abstract
In this work we present results of a direct search for strange quark matter (SQM) in cosmic rays with the PAMELA space spectrometer. If this state of matter exists it may be present in cosmic rays as particles, called strangelets, having a high density and an anomalously high mass-to-charge (A/Z) ratio. A direct search in space is complementary to those from ground-based spectrometers. Furthermore, it has the advantage of being potentially capable of directly identifying these particles, without any assumption on their interaction model with Earth's atmosphere and the long-term stability in terrestrial and lunar rocks. In the rigidity range from 1.0 to ∼1.0×10^{3} GV, no such particles were found in the data collected by PAMELA between 2006 and 2009. An upper limit on the strangelet flux in cosmic rays was therefore set for particles with charge 1≤Z≤8 and mass 4≤A≤1.2×10^{5}. This limit as a function of mass and as a function of magnetic rigidity allows us to constrain models of SQM production and propagation in the Galaxy.
- Published
- 2015
44. Separation of electrons and protons in the GAMMA-400 gamma-ray telescope
- Author
-
Leonov, A. A., Galper, A. M., Bonvicini, V., Topchiev, N. P., Adriani, O., Aptekar, R. L., Arkhangelskaja, I. V., Arkhangelskiy, A. I., Bergstrom, L., Berti, E., Bigongiari, G., Bobkov, S. G., Boezio, M., Bogomolov, E. A., Bonechi, S., Bongi, M., Bottai, S., Castellini, G., Cattaneo, P. W., Cumani, P., Dedenko, G. L., De Donato, C., Dogiel, V. A., Gorbunov, M. S., Gusakov, Yu. V., Hnatyk, B. I., Kadilin, V. V., Kaplin, V. A., Kaplun, A. A., Kheymits, M. D., Korepanov, V. E., Larsson, J., Loginov, V. A., Longo, F., Maestro, P., Marrocchesi, P. S., Mikhailov, V. V., Mocchiutti, E., Moiseev, A. A., Mori, N., Moskalenko, I. V., Naumov, P. Yu., Papini, P., Pearce, M., Picozza, P., Popov, A. V., Rappoldi, A., Ricciarini, S., Runtso, M. F., Ryde, F., Serdin, O. V., Sparvoli, R., Spillantini, P., Suchkov, S. I., Tavani, M., Taraskin, A. A., Tiberio, A., Tyurin, E. M., Ulanov, M. V., Vacchi, A., Vannuccini, E., Vasilyev, G. I., Yurkin, Yu. T., Zampa, N., Zirakashvili, V. N., Zverev, V. G., Leonov, A. A, Galper, A. M., Bonvicini, V., Topchiev, N. P., Adriaini, O., Aptekar, R. L., Arkhangelskaja, I. V., Arkhangelskiy, A. I., Bergstrom, L., Berti, E., Bigongiari, G., Bobkov, S. G., Boezio, M., Bogomolov, E. A., Bonechi, S., Bongi, M., Bottai, S., Castellini, G., Cattaneo, P. W., Cumani, Paolo, Dedenko, G. L., De Donato, C., Dogiel, V. A., Gorbunov, M. S., Gusakov, Y. u. V., Hnatyk, B. I., Kadilin, V. V., Kaplin, V. A., Kaplun, A. A., Kheymits, M. D., Korepanov, V. E., Larsson, J., Loginov, V. A., Longo, Francesco, Maestro, P., Marrocchesi, P. S., Mikhailov, V. V., Mocchiutti, E., Moiseev, A. A., Mori, N., Moskalenko, I. V., Naumov, P. Y. u., Papini, P., Pearce, M., Picozza, P., Rappoldi, A., Ricciarini, S., Runtso, M. F., Ryde, F., Serdin, O. V., Sparvoli, R., Spillantini, P., Suchkov, S. I., Taraskin, A. A., Tavani, M., Tiberio, A., Tyurin, E. M., Ulanov, M. V., Vacchi, A., Vannuccini, E., Vasilyev, G. I., Yurkin, Y. u. T., Zampa, N., Zirakashvili, V. N., and Zverev, V. G.
- Subjects
Space experiments ,Atmospheric Science ,Physics - Instrumentation and Detectors ,Hadron and electromagnetic shower ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,FOS: Physical sciences ,Aerospace Engineering ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Electron ,law.invention ,Telescope ,Positron ,law ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Cosmic rays ,Physics ,Range (particle radiation) ,Settore FIS/04 ,Gamma rays ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Space experiment ,Hadron and electromagnetic showers ,Geophysics ,Space and Planetary Science ,Gamma-ray telescope ,General Earth and Planetary Sciences ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,Fermi Gamma-ray Space Telescope - Abstract
The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following scientific goals: search for signatures of dark matter, investigation of gamma-ray point and extended sources, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the active Sun, as well as high-precision measurements of spectra of high-energy electrons and positrons, protons, and nuclei up to the knee. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in the total flux is ~10E-3 for high energies. In present paper, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The individual contribution to the proton rejection is studied for each detector system of the GAMMA-400 gamma-ray telescope. Using combined information from all detector systems allow us to provide the proton rejection from electrons with a factor of ~4x10E5 for vertical incident particles and ~3x10E5 for particles with initial inclination of 30 degrees. The calculations were performed for the electron energy range from 50 GeV to 1 TeV., Comment: 19 pages, 10 figures, submitted to Advances and Space Research
- Published
- 2015
45. CALOCUBE: An approach to high-granularity and homogenous calorimetry for space based detectors
- Author
-
Anna Vedda, G. Castellini, M. Trimarchi, Paolo Brogi, P. Cumani, A. Rappoldi, Gabriele Bigongiari, A Lamberto, Mauro Fasoli, P. Spillantini, Maria Miritello, Eugenio Berti, Nicola Mori, B. Zerbo, S. Bottai, V. Bonvicini, G. Pauletta, A. Gregorio, Lucrezia Auditore, O. Adriani, S. Bonechi, Raffaello D'Alessandro, P. Lenzi, S. Detti, P. S. Marrocchesi, S. B. Ricciarini, A. Sulaj, M. Bongi, P. Papini, E. Vannuccini, Antonio Cassese, G.F. Rappazzo, N. Zampa, O. Starodubtsev, G. Carotenuto, Antonio Trifiro, A Mezzasalma, A. Tiberio, G. Zampa, Sebastiano Albergo, Maria Grazia Bagliesi, P. W. Cattaneo, Mirko Boezio, D. Cauz, Lorenzo Bonechi, Paolo Maestro, Bongi, M., Adriani, O., Albergo, S., Auditore, L., Bagliesi, M. G., Berti, E., Bigongiari, G., Boezio, M., Bonechi, L., Bonechi, S., Bonvicini, V., Bottai, S., Brogi, P., Carotenuto, G., Cassese, A., Castellini, G., Cattaneo, P. W., Cauz, D., Cumani, Paolo, D'Alessandro, R., Detti, S., Fasoli, M., Gregorio, Anna, Lamberto, A., Lenzi, P., Maestro, P., Marrocchesi, P. S., Mezzasalma, A., Miritello, M., Mori, N., Papini, P., Pauletta, G., Rappazzo, G. F., Rappoldi, A., Ricciarini, S., Spillantini, P., Starodubtsev, O., Sulaj, A., Tiberio, A., Trifirò, A., Trimarchi, M., Vannuccini, E., Vedda, A., Zampa, G., Zampa, N., Zerbo, B., Bongi, M, Adriani, O, Albergo, S, Auditore, L, Bagliesi, M, Berti, E, Bigongiari, G, Boezio, M, Bonechi, L, Bonechi, S, Bonvicini, V, Bottai, S, Brogi, P, Carotenuto, G, Cassese, A, Castellini, G, Cattaneo, P, Cauz, D, Cumani, P, D'Alessandro, R, Detti, S, Fasoli, M, Gregorio, A, Lamberto, A, Lenzi, P, Maestro, P, Marrocchesi, P, Mezzasalma, A, Miritello, M, Mori, N, Papini, P, Pauletta, G, Rappazzo, G, Rappoldi, A, Ricciarini, S, Spillantini, P, Starodubtsev, O, Sulaj, A, Tiberio, A, Trifirò, A, Trimarchi, M, Vannuccini, E, Vedda, A, Zampa, G, Zampa, N, and Zerbo, B
- Subjects
History ,Physics::Instrumentation and Detectors ,Gamma ray ,Interaction length ,Budget control ,Geometry ,Electromagnetic particle ,FIS/07 - FISICA APPLICATA (A BENI CULTURALI, AMBIENTALI, BIOLOGIA E MEDICINA) ,Calorimetry ,Particle detector ,Radiation length ,Particle identification ,Education ,Physics and Astronomy (all) ,Cesium iodide ,Optics ,Gamma rays ,Particles (particulate matter) Absorption depths ,Energy resolutions ,Geometrical dimensions ,Radiation lengths ,Space experiments ,Space-based detector ,Energy resolution ,High energy physics ,Detectors and Experimental Techniques ,Physics ,Calorimeter ,Spectrometer ,Calorimeter (particle physics) ,business.industry ,Space experiment ,Computer Science Applications ,Computational physics ,Measuring instrument ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Particles (particulate matter) Absorption depth ,Geometrical dimension ,Granularity ,business - Abstract
Future space experiments dedicated to the observation of high-energy gamma and cosmic rays will increasingly rely on a highly performing calorimetry apparatus, and their physics performance will be primarily determined by the geometrical dimensions and the energy resolution of the calorimeter deployed. Thus it is extremely important to optimize its geometrical acceptance, the granularity, and its absorption depth for the measurement of the particle energy with respect to the total mass of the apparatus which is the most important constraint for a space launch. The proposed design tries to satisfy these criteria while staying within a total mass budget of about 1.6 tons. Calocube is a homogeneous calorimeter instrumented with Cesium iodide (CsI) crystals, whose geometry is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance, granularity is obtained by filling the cubic volume with small cubic CsI crystals. The total radiation length in any direction is more than adequate for optimal electromagnetic particle identification and energy measurement, whilst the interaction length is at least suficient to allow a precise reconstruction of hadronic showers. Optimal values for the size of the crystals and spacing among them have been studied. The design forms the basis of a three-year R&D; activity which has been approved and financed by INFN. An overall description of the system, as well as results from preliminary tests on particle beams will be described.
- Published
- 2015
46. The PAMELA experiment and cosmic ray observations
- Author
-
Mori, N., Adriani, O., Barbarino, G. C., Bazilevskaya, G. A., Bellotti, R., Boezio, M., Bogomolov, E. A., Bongi, M., Bonvicini, V., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carbone, R., Carlson, Per, Casolino, M., Castellini, G., Danilchenko, I. A., De Donato, C., De Santis, C., De Simone, N., Di Felice, V., Formato, V., Galper, A. M., Karelin, A. V., Koldashov, S. V., Koldobskiy, S., Krutkov, S. Y., Kvashnin, A. N., Leonov, A., Malakhov, V., Marcelli, L., Martucci, M., Mayorov, A. G., Menn, W., Merge, M., Mikhailov, V. V., Mocchiutti, E., Monaco, A., Munini, R., Osteria, G., Palma, F., Panico, B., Papini, P., Pearce, Mark, Picozza, P., Ricci, M., Ricciarini, S. B., Sarkar, R., Scotti, V., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y. I., Vacchi, A., Vannuccini, E., Vasilyev, G. I., Voronov, S. A., Yurkin, Y. T., Zampa, G., Zampa, N., Zverev, V. G., Mori, N., Adriani, O., Barbarino, G. C., Bazilevskaya, G. A., Bellotti, R., Boezio, M., Bogomolov, E. A., Bongi, M., Bonvicini, V., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carbone, R., Carlson, Per, Casolino, M., Castellini, G., Danilchenko, I. A., De Donato, C., De Santis, C., De Simone, N., Di Felice, V., Formato, V., Galper, A. M., Karelin, A. V., Koldashov, S. V., Koldobskiy, S., Krutkov, S. Y., Kvashnin, A. N., Leonov, A., Malakhov, V., Marcelli, L., Martucci, M., Mayorov, A. G., Menn, W., Merge, M., Mikhailov, V. V., Mocchiutti, E., Monaco, A., Munini, R., Osteria, G., Palma, F., Panico, B., Papini, P., Pearce, Mark, Picozza, P., Ricci, M., Ricciarini, S. B., Sarkar, R., Scotti, V., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y. I., Vacchi, A., Vannuccini, E., Vasilyev, G. I., Voronov, S. A., Yurkin, Y. T., Zampa, G., Zampa, N., and Zverev, V. G.
- Abstract
The PAMELA space experiment is aimed at precise measurements of the charged light component of the cosmic ray spectrum in the energy range spanning from the sub-GeV region to the TeV region, with a particular focus on antimatter. The instrument consists of a magnetic spectrometer, an electromagnetic sampling calorimeter,a time-off-light system, an anticoincidence shield, a tail-catcher scintillator and a neutron detector. Launched in June 2006 and hosted on the Resurs-DK1 satellite, PAMELA has been taking data for more than eight years, providing scientific results with unprecedented statistics and a continuous monitoring of the sun activity and the heliosphere., QC 20160118
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.