1. Towards a Quantitative Mechanistic Understanding of Localized Pulmonary Tissue Retention—A Combined In Vivo/In Silico Approach Based on Four Model Drugs
- Author
-
Anneke Himstedt, Jens Markus Borghardt, Sebastian G. Wicha, and Clemens Braun
- Subjects
Drug ,lung retention ,media_common.quotation_subject ,lung concentration ,lcsh:RS1-441 ,Pharmaceutical Science ,trachea ,Pharmacology ,030226 pharmacology & pharmacy ,Article ,lcsh:Pharmacy and materia medica ,03 medical and health sciences ,0302 clinical medicine ,Pharmacokinetics ,In vivo ,Parenchyma ,medicine ,Distribution (pharmacology) ,pulmonary blood flow ,media_common ,bronchi ,Lung ,business.industry ,Blood flow ,respiratory system ,respiratory tract diseases ,alveolar ,medicine.anatomical_structure ,030220 oncology & carcinogenesis ,Salmeterol ,tissue affinity ,business ,pharmacokinetics ,semi-mechanistic PK modelling ,medicine.drug - Abstract
Increasing affinity to lung tissue is an important strategy to achieve pulmonary retention and to prolong the duration of effect in the lung. As the lung is a very heterogeneous organ, differences in structure and blood flow may influence local pulmonary disposition. Here, a novel lung preparation technique was employed to investigate regional lung distribution of four drugs (salmeterol, fluticasone propionate, linezolid, and indomethacin) after intravenous administration in rats. A semi-mechanistic model was used to describe the observed drug concentrations in the trachea, bronchi, and the alveolar parenchyma based on tissue specific affinities (Kp) and blood flows. The model-based analysis was able to explain the pulmonary pharmacokinetics (PK) of the two neutral and one basic model drugs, suggesting up to six-fold differences in Kp between trachea and alveolar parenchyma for salmeterol. Applying the same principles, it was not possible to predict the pulmonary PK of indomethacin, indicating that acidic drugs might show different pulmonary PK characteristics. The separate estimates for local Kp, tracheal and bronchial blood flow were reported for the first time. This work highlights the importance of lung physiology- and drug-specific parameters for regional pulmonary tissue retention. Its understanding is key to optimize inhaled drugs for lung diseases.
- Published
- 2020
- Full Text
- View/download PDF