19 results on '"Zygmunt MS"'
Search Results
2. Editorial: Pathogenomics of the genus Brucella and beyond, volume II.
- Author
-
Cloeckaert A, Roop RM 2nd, Scholz HC, Whatmore AM, and Zygmunt MS
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.
- Published
- 2024
- Full Text
- View/download PDF
3. Genomic Diversity and Zoonotic Potential of Brucella neotomae.
- Author
-
Vergnaud G, Zygmunt MS, Ashford RT, Whatmore AM, and Cloeckaert A
- Subjects
- Humans, Genomics, Costa Rica epidemiology, Brucella genetics, Brucellosis epidemiology, Brucellosis veterinary
- Abstract
After reports in 2017 of Brucella neotomae infections among humans in Costa Rica, we sequenced 12 strains isolated from rodents during 1955-1964 from Utah, USA. We observed an exact strain match between the human isolates and 1 Utah isolate. Independent confirmation is required to clarify B. neotomae zoonotic potential.
- Published
- 2024
- Full Text
- View/download PDF
4. Brucella abortus in Kazakhstan, population structure and comparison with worldwide genetic diversity.
- Author
-
Shevtsov A, Cloeckaert A, Berdimuratova K, Shevtsova E, Shustov AV, Amirgazin A, Karibayev T, Kamalova D, Zygmunt MS, Ramanculov Y, and Vergnaud G
- Abstract
Brucella abortus is the main causative agent of brucellosis in cattle, leading to severe economic consequences in agriculture and affecting public health. The zoonotic nature of the infection increases the need to control the spread and dynamics of outbreaks in animals with the incorporation of high resolution genotyping techniques. Based on such methods, B. abortus is currently divided into three clades, A, B, and C. The latter includes subclades C1 and C2. This study presents the results of whole-genome sequencing of 49 B. abortus strains isolated in Kazakhstan between 1947 and 2015 and of 36 B. abortus strains of various geographic origins isolated from 1940 to 2004. In silico Multiple Locus Sequence Typing (MLST) allowed to assign strains from Kazakhstan to subclades C1 and to a much lower extend C2. Whole-genome Single-Nucleotide Polymorphism (wgSNP) analysis of the 46 strains of subclade C1 with strains of worldwide origins showed clustering with strains from neighboring countries, mostly North Caucasia, Western Russia, but also Siberia, China, and Mongolia. One of the three Kazakhstan strains assigned to subclade C2 matched the B. abortus S19 vaccine strain used in cattle, the other two were genetically close to the 104 M vaccine strain. Bayesian phylodynamic analysis dated the introduction of B. abortus subclade C1 into Kazakhstan to the 19th and early 20th centuries. We discuss this observation in view of the history of population migrations from Russia to the Kazakhstan steppes., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Shevtsov, Cloeckaert, Berdimuratova, Shevtsova, Shustov, Amirgazin, Karibayev, Kamalova, Zygmunt, Ramanculov and Vergnaud.)
- Published
- 2023
- Full Text
- View/download PDF
5. Pseudochrobactrum algeriensis sp. nov., isolated from lymph nodes of Algerian cattle.
- Author
-
Loperena-Barber M, Khames M, Leclercq SO, Zygmunt MS, Babot ED, Zúñiga-Ripa A, Gutiérrez A, Oumouna M, Moriyón I, Cloeckaert A, and Conde-Álvarez R
- Subjects
- Animals, Bacterial Typing Techniques, Base Composition, Brucellaceae isolation & purification, DNA, Bacterial genetics, Fatty Acids chemistry, Female, Phospholipids chemistry, RNA, Ribosomal, 16S genetics, Sequence Analysis, DNA, Brucellaceae classification, Cattle microbiology, Lymph Nodes microbiology, Phylogeny
- Abstract
Three Gram-negative, rod-shaped, oxidase-positive, non-spore-forming, non-motile strains (C130915_07
T , C150915_16 and C150915_17) were isolated from lymph nodes of Algerian cows. On the basis of 16S rRNA gene and whole genome similarities, the isolates were almost identical and clearly grouped in the genus Pseudochrobactrum . This allocation was confirmed by the analysis of fatty acids (C19:cyclo , C18 : 1 , C18 : 0 , C16 : 1 and C16 : 0 ) and of polar lipids (major components: phosphatidylethanolamine, ornithine-lipids, phosphatidylglycerol, cardiolipin and phosphatidylcholine, plus moderate amounts of phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine and other aminolipids). Genomic, physiological and biochemical data differentiated these isolates from previously described Pseudochrobactrum species in DNA relatedness, carbon assimilation pattern and growth temperature range. Thus, these organisms represent a novel species of the genus Pseudochrobactrum , for which the name Pseudochrobactrum algeriensis sp. nov. is proposed (type strain C130915_07T =CECT30232T =LMG 32378T ).- Published
- 2022
- Full Text
- View/download PDF
6. Editorial: Pathogenomics of the Genus Brucella and Beyond.
- Author
-
Cloeckaert A, Zygmunt MS, Scholz HC, Vizcaino N, and Whatmore AM
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2021
- Full Text
- View/download PDF
7. Whole-Genome Sequence of a Brucella pinnipedialis Sequence Type 54 Strain Isolated from a Hooded Seal ( Cystophora cristata ) from the North Atlantic Ocean, Norway.
- Author
-
Zygmunt MS, Vergnaud G, and Cloeckaert A
- Abstract
Since the 1990s, Brucella strains have been isolated from a wide variety of marine mammal species. We report the first complete genome sequence of a Brucella strain isolated from a hooded seal ( Cystophora cristata ), Brucella pinnipedialis strain 23a-1 of sequence type 54, found in the North Atlantic Ocean surrounding Norway., (Copyright © 2021 Zygmunt et al.)
- Published
- 2021
- Full Text
- View/download PDF
8. Omp2b Porin Alteration in the Course of Evolution of Brucella spp.
- Author
-
Cloeckaert A, Vergnaud G, and Zygmunt MS
- Abstract
The genus Brucella comprises major pathogenic species causing disease in livestock and humans, e.g. B. melitensis . In the past few years, the genus has been significantly expanded by the discovery of phylogenetically more distant lineages comprising strains from diverse wildlife animal species, including amphibians and fish. The strains represent several potential new species, with B. inopinata as solely named representative. Being genetically more distant between each other, relative to the "classical" Brucella species, they present distinct atypical phenotypes and surface antigens. Among surface protein antigens, the Omp2a and Omp2b porins display the highest diversity in the classical Brucella species. The genes coding for these proteins are closely linked in the Brucella genome and oriented in opposite directions. They share between 85 and 100% sequence identity depending on the Brucella species, biovar, or genotype. Only the omp2b gene copy has been shown to be expressed and genetic variation is extensively generated by gene conversion between the two copies. In this study, we analyzed the omp2 loci of the non-classical Brucella spp. Starting from two distinct ancestral genes, represented by Australian rodent strains and B. inopinata , a stepwise nucleotide reduction was observed in the omp2b gene copy. It consisted of a first reduction affecting the region encoding the surface L5 loop of the porin, previously shown to be critical in sugar permeability, followed by a nucleotide reduction in the surface L8 loop-encoding region. It resulted in a final omp2b gene size shared between two distinct clades of non-classical Brucella spp. (African bullfrog isolates) and the group of classical Brucella species. Further evolution led to complete homogenization of both omp2 gene copies in some Brucella species such as B. vulpis or B. papionis . The stepwise omp2b deletions seemed to be generated through recombination with the respective omp2a gene copy, presenting a conserved size among Brucella spp., and may involve short direct DNA repeats. Successive Omp2b porin alteration correlated with increasing porin permeability in the course of evolution of Brucella spp. They possibly have adapted their porin to survive environmental conditions encountered and to reach their final status as intracellular pathogen., (Copyright © 2020 Cloeckaert, Vergnaud and Zygmunt.)
- Published
- 2020
- Full Text
- View/download PDF
9. Taxonomic Organization of the Family Brucellaceae Based on a Phylogenomic Approach.
- Author
-
Leclercq SO, Cloeckaert A, and Zygmunt MS
- Abstract
Deciphering the evolutionary history of pathogenic bacteria and their near neighbors may help to understand the genetic or ecological bases which led to their pathogenic behavior. The Brucellaceae family comprises zoonotic pathogenic species belonging to the genus Brucella as well as the environmental genus Ochrobactrum for which some species are considered as opportunistic pathogens. Here, we used a phylogenomic approach including a set of 145 Brucellaceae genomes representative of the family diversity and more than 40 genomes of the order Rhizobiales to infer the taxonomic relationships between the family's species. Our results clarified some unresolved phylogenetic ambiguities, conducting to the exclusion of Mycoplana spp. out of the family Brucellaceae and the positioning of all Brucella spp. as a single genomic species within the current Ochrobactrum species diversity. Additional analyses also revealed that Ochrobactrum spp. separate into two clades, one comprising mostly environmental species while the other one includes the species considered as pathogens ( Brucella spp.) or opportunistic pathogens (mainly O. anthropi , O. intermedium , and O. pseudintermedium ). Finally, we show that O. intermedium is undergoing a beginning of genome reduction suggestive of an ongoing ecological niche specialization, and that some lineages of O. intermedium and O. anthropi may shift toward an adaption to the human host., (Copyright © 2020 Leclercq, Cloeckaert and Zygmunt.)
- Published
- 2020
- Full Text
- View/download PDF
10. Corrigendum: Genetic and Phenotypic Characterization of the Etiological Agent of Canine Orchiepididymitis Smooth Brucella sp. BCCN84.3.
- Author
-
Guzmán-Verri C, Suárez-Esquivel M, Ruíz-Villalobos N, Zygmunt MS, Gonnet M, Campos E, Víquez-Ruiz E, Chacón-Díaz C, Aragón-Aranda B, Conde-Álvarez R, Moriyón I, Blasco JM, Muñoz PM, Baker KS, Thomson NR, Cloeckaert A, and Moreno E
- Abstract
[This corrects the article DOI: 10.3389/fvets.2019.00175.].
- Published
- 2019
- Full Text
- View/download PDF
11. Genetic and Phenotypic Characterization of the Etiological Agent of Canine Orchiepididymitis Smooth Brucella sp. BCCN84.3.
- Author
-
Guzmán-Verri C, Suárez-Esquivel M, Ruíz-Villalobos N, Zygmunt MS, Gonnet M, Campos E, Víquez-Ruiz E, Chacón-Díaz C, Aragón-Aranda B, Conde-Álvarez R, Moriyón I, Blasco JM, Muñoz PM, Baker KS, Thomson NR, Cloeckaert A, and Moreno E
- Abstract
Members of the genus Brucella cluster in two phylogenetic groups: classical and non-classical species. The former group is composed of Brucella species that cause disease in mammals, including humans. A Brucella species, labeled as Brucella sp. BCCN84.3, was isolated from the testes of a Saint Bernard dog suffering orchiepididymitis, in Costa Rica. Following standard microbiological methods, the bacterium was first defined as " Brucella melitensis biovar 2." Further molecular typing, identified the strain as an atypical " Brucella suis ." Distinctive Brucella sp. BCCN84.3 markers, absent in other Brucella species and strains, were revealed by fatty acid methyl ester analysis, high resolution melting PCR and omp25 and omp2a/omp2b gene diversity. Analysis of multiple loci variable number of tandem repeats and whole genome sequencing demonstrated that this isolate was different from the currently described Brucella species. The smooth Brucella sp. BCCN84.3 clusters together with the classical Brucella clade and displays all the genes required for virulence. Brucella sp. BCCN84.3 is a species nova taxonomical entity displaying pathogenicity; therefore, relevant for differential diagnoses in the context of brucellosis. Considering the debate on the Brucella species concept, there is a need to describe the extant taxonomical entities of these pathogens in order to understand the dispersion and evolution.
- Published
- 2019
- Full Text
- View/download PDF
12. WadD, a New Brucella Lipopolysaccharide Core Glycosyltransferase Identified by Genomic Search and Phenotypic Characterization.
- Author
-
Salvador-Bescós M, Gil-Ramírez Y, Zúñiga-Ripa A, Martínez-Gómez E, de Miguel MJ, Muñoz PM, Cloeckaert A, Zygmunt MS, Moriyón I, Iriarte M, and Conde-Álvarez R
- Abstract
Brucellosis, an infectious disease caused by Brucella , is one of the most extended bacterial zoonosis in the world and an important cause of economic losses and human suffering. The lipopolysaccharide (LPS) of Brucella plays a major role in virulence as it impairs normal recognition by the innate immune system and delays the immune response. The LPS core is a branched structure involved in resistance to complement and polycationic peptides, and mutants in glycosyltransferases required for the synthesis of the lateral branch not linked to the O -polysaccharide (O-PS) are attenuated and have been proposed as vaccine candidates. For this reason, the complete understanding of the genes involved in the synthesis of this LPS section is of particular interest. The chemical structure of the Brucella LPS core suggests that, in addition to the already identified WadB and WadC glycosyltransferases, others could be implicated in the synthesis of this lateral branch. To clarify this point, we identified and constructed mutants in 11 ORFs encoding putative glycosyltransferases in B. abortus . Four of these ORFs, regulated by the virulence regulator MucR (involved in LPS synthesis) or the BvrR/BvrS system (implicated in the synthesis of surface components), were not required for the synthesis of a complete LPS neither for virulence or interaction with polycationic peptides and/or complement. Among the other seven ORFs, six seemed not to be required for the synthesis of the core LPS since the corresponding mutants kept the O -PS and reacted as the wild type with polyclonal sera. Interestingly, mutant in ORF BAB1_0953 (renamed wadD ) lost reactivity against antibodies that recognize the core section while kept the O -PS. This suggests that WadD is a new glycosyltransferase adding one or more sugars to the core lateral branch. WadD mutants were more sensitive than the parental strain to components of the innate immune system and played a role in chronic stages of infection. These results corroborate and extend previous work indicating that the Brucella LPS core is a branched structure that constitutes a steric impairment preventing the elements of the innate immune system to fight against Brucella .
- Published
- 2018
- Full Text
- View/download PDF
13. Characterization of Cell Envelope Multiple Mutants of Brucella ovis and Assessment in Mice of Their Vaccine Potential.
- Author
-
Sidhu-Muñoz RS, Sancho P, Cloeckaert A, Zygmunt MS, de Miguel MJ, Tejedor C, and Vizcaíno N
- Abstract
Brucella ovis is a non-zoonotic Brucella species lacking specific vaccine. It presents a narrow host range, a unique biology relative to other Brucella species, and important distinct surface properties. To increase our knowledge on its peculiar surface and virulence features, and seeking to develop a specific vaccine, multiple mutants for nine relevant cell-envelope-related genes were investigated. Mutants lacking Omp10 plus Omp19 could not be obtained, suggesting that at least one of these lipoproteins is required for viability. A similar result was obtained for the double deletion of omp31 and omp25 that encode two major surface proteins. Conversely, the absence of major Omp25c (proved essential for internalization in HeLa cells) together with Omp25 or Omp31 was tolerated by the bacterium. Although showing important in vitro and in vivo defects, the Δ omp10 Δ omp31 Δ omp25c mutant was obtained, demonstrating that B. ovis PA survives to the simultaneous absence of Omp10 and four out seven proteins of the Omp25/Omp31 family (i.e., Omp31, Omp25c, Omp25b, and Omp31b, the two latter naturally absent in B. ovis ). Three multiple mutants were selected for a detailed analysis of virulence in the mouse model. The Δ omp31 Δ cgs and Δ omp10 Δ omp31 Δ omp25c mutants were highly attenuated when inoculated at 10
6 colony forming units/mouse but they established a persistent infection when the infection dose was increased 100-fold. The Δ omp10 Δ ugpB Δ omp31 mutant showed a similar behavior until week 3 post-infection but was then totally cleared from spleen. Accordingly, it was retained as vaccine candidate for mice protection assays. When compared to classical B. melitensis Rev1 heterologous vaccine, the triple mutant induced limited splenomegaly, a significantly higher antibody response against whole B. ovis PA cells, an equivalent memory cellular response and, according to spleen colonization measurements, better protection against a challenge with virulent B. ovis PA. Therefore, it would be a good candidate to be evaluated in the natural host as a specific vaccine against B. ovis that would avoid the drawbacks of B. melitensis Rev1. In addition, the lack in this attenuated strain of Omp31, recognized as a highly immunogenic protein during B. ovis infection, would favor the differentiation between infected and vaccinated animals using Omp31 as diagnostic target.- Published
- 2018
- Full Text
- View/download PDF
14. Genotypic Expansion Within the Population Structure of Classical Brucella Species Revealed by MLVA16 Typing of 1404 Brucella Isolates From Different Animal and Geographic Origins, 1974-2006.
- Author
-
Vergnaud G, Hauck Y, Christiany D, Daoud B, Pourcel C, Jacques I, Cloeckaert A, and Zygmunt MS
- Abstract
Previous studies have shown the usefulness of MLVA16 as a rapid molecular identification and classification method for Brucella species and biovars including recently described novel Brucella species from wildlife. Most studies were conducted on a limited number of strains from limited geographic/host origins. The objective of this study was to assess genetic diversity of Brucella spp. by MLVA16 on a larger scale. Thus, 1404 animal or human isolates collected from all parts of the world over a period of 32 years (1974-2006) were investigated. Selection of the 1404 strains was done among the approximately 4000 strains collection of the BCCN ( Brucella Culture Collection Nouzilly), based on classical biotyping and on the animal/human/geographic origin over the time period considered. MLVA16 was performed on extracted DNAs using high throughput capillary electrophoresis. The 16 loci were amplified in four multiplex PCR reactions. This large scale study firstly confirmed the accuracy of MLVA16 typing for Brucella species and biovar identification and its congruence with the recently described Extended Multilocus Sequence Analysis. In addition, it allowed identifying novel MLVA11 (based upon 11 slowly evolving VNTRs) genotypes representing an increase of 15% relative to the previously known Brucella MLVA11 genotypes. Cluster analysis showed that among the MLVA16 genotypes some were genetically more distant from the major classical clades. For example new major clusters of B. abortus biovar 3 isolated from cattle in Sub-Saharan Africa were identified. For other classical species and biovars this study indicated also genotypic expansion within the population structure of classical Brucella species. MLVA proves to be a powerful tool to rapidly assess genetic diversity of bacterial populations on a large scale, as here on a large collection of strains of the genomically homogeneous genus Brucella . The highly discriminatory power of MLVA appears of particular interest as a first step for selection of Brucella strains for whole-genome sequencing. The MLVA data of this study were added to the public Brucella MLVA database at http://microbesgenotyping.i2bc.paris-saclay.fr. Current version Brucella _4_3 comprises typing data from more than 5000 strains including in silico data analysis of public whole genome sequence datasets.
- Published
- 2018
- Full Text
- View/download PDF
15. Editorial: Genetics of Acquired Antimicrobial Resistance in Animal and Zoonotic Pathogens.
- Author
-
Cloeckaert A, Zygmunt MS, and Doublet B
- Published
- 2017
- Full Text
- View/download PDF
16. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts.
- Author
-
Al Dahouk S, Köhler S, Occhialini A, Jiménez de Bagüés MP, Hammerl JA, Eisenberg T, Vergnaud G, Cloeckaert A, Zygmunt MS, Whatmore AM, Melzer F, Drees KP, Foster JT, Wattam AR, and Scholz HC
- Subjects
- Animals, Animals, Zoo, Anura, Bacterial Proteins metabolism, Biological Evolution, Brucellaceae classification, Brucellaceae growth & development, Brucellaceae metabolism, Cell Line, Flagella genetics, Flagella metabolism, Flagella ultrastructure, Genetic Heterogeneity, Germany, Gram-Negative Bacterial Infections microbiology, Liver microbiology, Macrophages microbiology, Mice, Mice, Inbred BALB C, Multilocus Sequence Typing, Spleen microbiology, Tanzania, Bacterial Proteins genetics, Brucellaceae genetics, Gene Expression Regulation, Bacterial, Gram-Negative Bacterial Infections veterinary, Host-Pathogen Interactions, Phylogeny
- Abstract
Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species.
- Published
- 2017
- Full Text
- View/download PDF
17. Brucella vulpis sp. nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes).
- Author
-
Scholz HC, Revilla-Fernández S, Dahouk SA, Hammerl JA, Zygmunt MS, Cloeckaert A, Koylass M, Whatmore AM, Blom J, Vergnaud G, Witte A, Aistleitner K, and Hofer E
- Subjects
- Animals, Austria, Bacterial Typing Techniques, Bacteriophage Typing, Base Composition, Brucella genetics, Brucella isolation & purification, DNA, Bacterial genetics, Sequence Analysis, DNA, Brucella classification, Foxes microbiology, Lymph Nodes microbiology, Phylogeny
- Abstract
Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).
- Published
- 2016
- Full Text
- View/download PDF
18. Monoclonal Antibody-Defined Specific C Epitope of Brucella O-Polysaccharide Revisited.
- Author
-
Zygmunt MS, Bundle DR, Ganesh NV, Guiard J, and Cloeckaert A
- Subjects
- Animals, Epitopes immunology, Humans, Models, Molecular, Molecular Structure, O Antigens immunology, Polysaccharides, Bacterial immunology, Antibodies, Bacterial immunology, Antibodies, Monoclonal immunology, Brucella immunology, Epitopes chemistry, O Antigens chemistry, Polysaccharides, Bacterial chemistry
- Abstract
The C epitope of Brucella O-polysaccharide (O-PS) has so far lacked definitive structural identity. Revised structures for this antigen revealed a unique capping perosamine tetrasaccharide consisting of a sequence of 1,2:1,3:1,2 interresidue linkages. Here, using synthetic oligosaccharide glycoconjugates, the α-1,3 linkage of the O-PS is shown to be an integral structural requirement of this epitope. Although A-dominant strains possess only one or two copies of the capping tetrasaccharide, this creates a unique pentasaccharide antigenic determinant with the linkage sequence 1,2:1,3:1,2:1,2 that is always present in major pathogenic Brucella species., (Copyright © 2015, American Society for Microbiology. All Rights Reserved.)
- Published
- 2015
- Full Text
- View/download PDF
19. Brucella papionis sp. nov., isolated from baboons (Papio spp.).
- Author
-
Whatmore AM, Davison N, Cloeckaert A, Al Dahouk S, Zygmunt MS, Brew SD, Perrett LL, Koylass MS, Vergnaud G, Quance C, Scholz HC, Dick EJ, Hubbard G, and Schlabritz-Loutsevitch NE
- Subjects
- Animals, Bacterial Typing Techniques, Brucella genetics, Brucella isolation & purification, DNA, Bacterial genetics, Female, Genes, Bacterial, Molecular Sequence Data, Multilocus Sequence Typing, Nucleic Acid Hybridization, RNA, Ribosomal, 16S genetics, Sequence Analysis, DNA, Brucella classification, Papio microbiology, Phylogeny
- Abstract
Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60(T) and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60(T) and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60(T) ( = NCTC 13660(T) = CIRMBP 0958(T))., (Crown Copyright 2014. Reproduced with the permission of the Controller of Her Majesty's Stationery Office/Queen's Printer for Scotland and AHVLA.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.