1. Fast Diffeomorphic Image Registration using Patch based Fully Convolutional Networks
- Author
-
Wu, Jiong, Zhou, Shuang, Lin, Li, Wang, Xin, and Tan, Wenxue
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Diffeomorphic image registration is a fundamental step in medical image analysis, owing to its capability to ensure the invertibility of transformations and preservation of topology. Currently, unsupervised learning-based registration techniques primarily extract features at the image level, potentially limiting their efficacy. This paper proposes a novel unsupervised learning-based fully convolutional network (FCN) framework for fast diffeomorphic image registration, emphasizing feature acquisition at the image patch level. Furthermore, a novel differential operator is introduced and integrated into the FCN architecture for parameter learning. Experiments are conducted on three distinct T1-weighted magnetic resonance imaging (T1w MRI) datasets. Comparative analyses with three state-of-the-art diffeomorphic image registration approaches including a typical conventional registration algorithm and two representative unsupervised learning-based methods, reveal that the proposed method exhibits superior performance in both registration accuracy and topology preservation.
- Published
- 2024