81 results on '"Willenbacher, N."'
Search Results
2. Sedimentation of lithium–iron–phosphate and carbon black particles in opaque suspensions used for lithium-ion-battery electrodes
- Author
-
Balbierer, R., Gordon, R., Schuhmann, S., Willenbacher, N., Nirschl, H., and Guthausen, G.
- Published
- 2019
- Full Text
- View/download PDF
3. Fluidization of Highly Concentrated Colloidal Dispersions by Tailoring of Attractive Interactions
- Author
-
Bartsch, E., Burger, D., Burger, S., Gisin, J., Schneider, R., Thorwarth, O., Vesaratchanon, J., Weis, C., Wiemann, M., Willenbacher, N., Kind, Matthias, editor, Peukert, Wolfgang, editor, Rehage, Heinz, editor, and Schuchmann, Heike P., editor
- Published
- 2015
- Full Text
- View/download PDF
4. Formation of Arrested States in Natural Di- and Trioctahedral Smectite Dispersions Compared to Those in Synthetic Hectorite — A Macro- and Microrheological Study
- Author
-
Pilavtepe, M., Delavernhe, L., Steudel, A., Schumann, R., Willenbacher, N., and Emmerich, K.
- Published
- 2018
- Full Text
- View/download PDF
5. Effects of wetting behaviour and contact resistance on thermal and rheological characteristics of thermal interface materials
- Author
-
Mayer, J. L., primary, Griesinger, A., additional, and Willenbacher, N., additional
- Published
- 2022
- Full Text
- View/download PDF
6. Monitoring matrix remodeling in the cellular microenvironment using microrheology for complex cellular systems
- Author
-
Hafner, J., Grijalva, D., Ludwig-Husemann, A., Bertels, S., Bensinger, L., Raic, A., Gebauer, J., Oelschlaeger, C., Bastmeyer, M., Bieback, K., Lee-Thedieck, C., and Willenbacher, N.
- Subjects
Life sciences ,biology ,ddc:570 - Published
- 2020
- Full Text
- View/download PDF
7. Hyaluronic acid cryogels with non-cytotoxic crosslinker genipin
- Author
-
Roether, J., Oelschlaeger, C., and Willenbacher, N.
- Subjects
Chemical engineering ,ddc:660 ,lcsh:TA401-492 ,lcsh:Materials of engineering and construction. Mechanics of materials - Abstract
For the first time, macroporous, elastic, three-dimensional hyaluronic acid cryogels were prepared with genipin as non-cytotoxic crosslinking agent. These cryogels are characterized by a lamellar porous structure with a homogeneous pore size of ~100 µm, shear elasticity of ~2 kPa and a swelling ratio of 2.5 in water. Additionally, multiple particle tracking based microrheology measurements reveal the formation of a heterogeneous network. This novel biomaterial owns great potential as non-cytotoxic alternative for application in drug delivery, as tissue engineering scaffold or wound healing substrate and can help reducing toxicity of artificial skin grafts or tissue equivalents. Keywords: Non-cytotoxic crosslinking, Genipin, Hyaluronic acid, 3D scaffold, Cryogelation
- Published
- 2019
8. Bottom-Up Assembly of DNA–Silica Nanocomposites into Micrometer-Sized Hollow Spheres
- Author
-
Hu, Y., Grösche, M., Sheshachala, S., Oelschlaeger, C., Willenbacher, N., Rabe, K. S., and Niemeyer, C. M.
- Subjects
Life sciences ,biology ,ddc:570 - Abstract
Although DNA nanotechnology has developed into a highly innovative and lively field of research at the interface between chemistry, materials science, and biotechnology, there is still a great need for methodological approaches for bridging the size regime of DNA nanostructures with that of micrometer‐ and millimeter‐sized units for practical applications. We report on novel hierarchically structured composite materials from silica nanoparticles and DNA polymers that can be obtained by self‐assembly through the clamped hybridization chain reaction. The nanocomposite materials can be assembled into thin layers within microfluidically generated water‐in‐oil droplets to produce mechanically stabilized hollow spheres with uniform size distributions at high throughput rates. The fact that cells can be encapsulated in these microcontainers suggests that our concept not only contributes to the further development of supramolecular bottom‐up manufacturing, but can also be exploited for applications in the life sciences.
- Published
- 2019
9. Results of the Project 'AdmMo' – Cell and Module Development towards a 318 W Module
- Author
-
Nekarda, J.-F., Brand, A., Linse, M., Clement, F., Schneider, J., Turek, M., Großer, S., Schoenfelder, S., Urban, T., Ehrl, M., Müller, M., Heitmann, J., Yüce, C., Willenbacher, N., Große, T., Böhme, R., König, M., Frintrup, H., Fuss-Kailuweit, P., Kersten, F., Mette, A., Müller, J.W., and Preu, R.
- Subjects
Manufacturing & Production of Si Cells ,Silicon Cells - Abstract
35th European Photovoltaic Solar Energy Conference and Exhibition; 825-831, In December 2014, the publicly funded project "AdmMo: Advanced multi-crystalline Modules" initiated by Hanwha Q-Cells started with the partners Heraeus, Frintrup, Innolas-Solutions, Meyer Burger Germany, Wavelabs, Karlsruhe Institute of Technology, Bergakademie Freiberg, Fraunhofer CSP and Fraunhofer ISE. The content of the project, which ended on April 30th, 2018, is a comprehensive and consistent further development of PERC cell and module technology. The overall project objective is a reduction of the “Levelized Cost of Electricity” (LCoE) to < 6 € ct / kWh in relation to the southern German region. For this purpose, a substantial cost reduction with simultaneous increase in performance of the cells and modules as well as a service life of the modules extended to 30 years was aspired. Our conference paper gives an overview of the most important results. Among other things, Cz-PERC solar cells with efficiencies > 22 % and based on this a module of 120 half-cells with a power output of 318 watts is demonstrated.
- Published
- 2018
- Full Text
- View/download PDF
10. Macro- and microscale structure formation and aging in different arrested states of Laponite dispersions
- Author
-
Pilavtepe, M., primary, Recktenwald, S. M., additional, Schuhmann, R., additional, Emmerich, K., additional, and Willenbacher, N., additional
- Published
- 2018
- Full Text
- View/download PDF
11. Microstructure, local dynamics, and flow behavior of colloidal suspensions with weak attractive interactions
- Author
-
Weis, C., Oelschlaeger, C., Dijkstra, D., Ranft, M., and Willenbacher, N.
- Subjects
Condensed Matter::Soft Condensed Matter ,Chemical engineering ,Glasses ,ddc:660 ,Colloids ,Imaging techniques ,Rheology ,Characterization and analytical techniques ,Article - Abstract
We present a comprehensive micro- and macrorheological study of the effect of weak depletion attraction (Ψdep ≈ 1–10 kBT) on dense colloidal suspensions stabilized by short-range repulsive interactions. We used aqueous polymer dispersions as model system and demonstrated the unique capabilities of multiple particle tracking (MPT) to disclose structural changes in such technically important systems exhibiting many characteristic features of hard sphere systems. Below the hard sphere freezing point ϕc, viscosity increases monotonically with increasing Ψdep due to the transition from a fluid to a fluid/crystalline and finally to a gel state. Above ϕc, increasing attraction strength first results in a viscosity reduction corresponding to the formation of large, permeable crystals and then in a viscosity increase when a network of dense, small crystals forms. The fraction of the fluid and crystal phase, particle concentration in each phase as well as the modulus of the micro-crystals are obtained, the latter decreases with Ψdep. Above the colloidal glass transition strong heterogeneities and different local particle mobility in the repulsive and attractive arrested states are found. Particles are trapped in the cage of neighboring particles rather than in an attractive potential well. The intermediate ergodic state exhibits uniform tracer diffusivity.
- Published
- 2016
- Full Text
- View/download PDF
12. Zerstäubung von biosyncrude
- Author
-
Jakobs, T., Sänger, A., Jampolski, G., Chaussonnet, G., Müller, T., Willenbacher, N., Zarzalis, N., Bauer, H.-J., and Kolb, T.
- Subjects
Chemical engineering ,ddc:660 - Published
- 2015
- Full Text
- View/download PDF
13. Synthesis, Structural and Micromechanical Properties of 3D Hyaluronic Acid-Based Cryogel Scaffolds
- Author
-
Oelschlaeger, C., primary, Bossler, F., additional, and Willenbacher, N., additional
- Published
- 2016
- Full Text
- View/download PDF
14. Visualization of micro-scale inhomogeneities in acrylic thickener solutions: A multiple particle tracking study
- Author
-
Kowalczyk, A., primary, Oelschlaeger, C., additional, and Willenbacher, N., additional
- Published
- 2015
- Full Text
- View/download PDF
15. Relating foam and interfacial rheological properties of β-lactoglobulin solutions.
- Author
-
Lexis, M. and Willenbacher, N.
- Published
- 2014
- Full Text
- View/download PDF
16. Microrheology for studying collagen solutions and collagen based ECM substitutes during cell proliferation and differentiation
- Author
-
Hafner, Johanna and Willenbacher, N.
- Subjects
Chemical engineering ,ddc:660 - Published
- 2020
- Full Text
- View/download PDF
17. Hierarchically Structured Porous Bodies from Capillary Suspensions : Hiërarchisch gestructureerde, poreuze lichamen uit capillaire suspensies
- Author
-
Weiss, M, Willenbacher, N, and Koos, E
- Abstract
The combination of ceramic's intrinsic properties such as chemical resistance, temperature stability, and mechanical properties, with the low density and high permeability of porous materials has been of interest in many industrial applications such as in biomedical, filtration, energy storage, heat exchange, gas adsorption, insulation, as lightweight construction materials or as catalyst monoliths or catalyst supports. The ceramics need to offer tailored porosity, pore size, chemical composition and are often shaped for the specific applications. At present, there are four commonly applied processing routes for macroporous ceramics: direct foaming, replica templating, sacrificial templating, and partial sintering. However, high porosities (> 50 %) with pore sizes 1 - 10 µm are not easily accessible with these methods. This could be achieved by the capillary suspensions approach. Capillary suspensions are three-phase systems with a small amount (< 5 vol%) of an immiscible secondary phase added to a suspension. The secondary phase creates a strong particle network due to capillary forces, which changes the rheological properties from fluid-like or weakly elastic to strong gel-like behavior. The particle network connected through capillary bridges is much stronger than the corresponding network created only by attractive van der Waals forces; it does not collapse during debinding or sintering, and therefore can serve as precursor for sintered materials with high open-porosity. It was previously shown that ceramic capillary suspensions can be used to create sintered bodies from various materials with tailored microstructure and can be even applied to a 3D printing process. However, the achievable maximum porosity is currently limited to a maximum of 65 % and the achievable mechanical strength is surpassed by the direct foaming and replica methods. Moreover, the direct applicability of this processing method in an industrially relevant environment has not yet been shown. In this thesis, I examined the increased mechanical and thermal stability of the extruded green bodies by adding a secondary phase. Shrinkage during debinding was determined to be only 20 - 30 % for ceramic capillary suspensions, remarkably lower than for the other methods. This low shrinkage also results in a high dimensional accuracy, which enables shaping complex forms with undercuts and overhangs. I succeeded in forming the capillary suspensions through a suitable twin-screw apparatus from the raw components without any difference from premixed capillary suspensions. The effect on pore size distribution and pore size is preserved through the extrusion process and is similar to mold casting. Capillary suspensions are applicable to a 3D-printing and a continuous extrusion process, which makes them suitable for prototyping as well as mass production. The low shrinkage and high shape accuracy enables reliable processing. In order to improve mechanical properties and extend the achievable porosity, the secondary fluid is used to deposit ceramic nanoparticles specifically in the contact regions of the microparticles. Thereby, I have advanced control over the resulting microstructure while harnessing the nanoparticles as sintering aids. Based on this concept, the mechanical strength is increased by up to 5 times and the limit for the maximum obtainable porosity is pushed to 75 % while still preserving a high level of mechanical strength. Thus, I demonstrate state-of-the-art mechanical properties without sacrificing versatility and tunability. The combination with a 3D-printing (direct ink writing) process yields cellular structures with specific strength close to that of balsa wood. For a relative density of 0.3, I achieved a compressive strength of 60 MPa, doubling typical values for cellular ceramics at this relative density. I reached these values for both investigated raw materials, alumina and aluminosilicate, strongly differing in original strength, indicating the method's invariance in the used chemical compositions and highlighting its versatility. Furthermore, I can use the nanoparticle-laden secondary liquids as a temperature stable "bonding agent" for catalytically active particles, e.g. zeolites, to generate an additional hierarchical level. The sintering activated neck formation of the ceramic nanoparticles "glues" the coarse catalytic particles together and provides mechanical stability while preserving the inherent porosity in the zeolite particles. The resulting monoliths have a fully open macroporosity of more than 50 % while preserving at least 85 % of raw powder's BET surface area. I confirmed the zeolite's functionality by catalytic methanol to olefins reactions where the monolith shows similar selectivity as the initial powder. Therefore, I can manufacture hierarchically structured porous monoliths with high specific surface area for high-temperature catalytic applications. In summary, I show a versatile processing route for porous bodies. The fully open, tunable porous structure and applicability to a wide range of sintering materials offers the possibility to meet the requirements for targeted lightweight high temperature processes, e.g. in biomedical, filtration, energy storage, heat exchange, gas adsorption, insulation or catalytic applications. Due to the high specific strength, independent of the material, and the precise shaping, this route has the potential to find widespread use in industrial processes. status: published
- Published
- 2019
18. Development of Highly Concentrated Conductive Silver Pastes for Front-Side Metallization of Silicon Solar Cells - Their Flow Properties and Printing Behavior
- Author
-
Yüce, Ceren and Willenbacher, N.
- Subjects
Chemical engineering ,ddc:660 - Published
- 2019
- Full Text
- View/download PDF
19. Flow Instabilities of Dilute Surfactant Solutions in Elongational Deformations
- Author
-
Recktenwald, Steffen Michael and Willenbacher, N.
- Subjects
Chemical engineering ,ddc:660 - Published
- 2019
20. Screen Printing and Rheology of Pastes
- Author
-
Xu, Chenhui and Willenbacher, N.
- Subjects
Chemical engineering ,ddc:660 - Published
- 2019
- Full Text
- View/download PDF
21. Untersuchung des Phasenverhaltens kolloidaler Dispersionen mit schwach attraktiven Wechselwirkungen
- Author
-
Weis, Clara and Willenbacher, N.
- Subjects
Phasenverhalten ,Kolloidale Dispersionen ,Repulsive Wechselwikrungen ,Chemical engineering ,Mikrorheologie ,ddc:660 ,Rheologie ,Depletion Wechselwirkung - Abstract
Das Verständnis des Phasenverhaltens kolloidaler Dispersionen ist weltweites Forschungsthema. Kolloidale Dispersionen dienen als Modellsysteme für physikalische Phänomene wie Kristallisation, Gel- oder Glasbildung, da eine Untersuchung auf zugänglichen Zeit- und Längenskalen möglich ist. Außerdem werden kolloidale Dispersionen in Massenprodukten wie Klebstoffen und Lacken jährlich im Millionenmaßstab produziert. Eine Schlüsselrolle spielt dabei die Kontrolle der Fließeigenschaften, um den vielfältigen Anforderungen während der Produktion und in der Anwendung gerecht zu werden. In dieser Arbeit wurde das Phasenverhalten wässriger kolloidaler Dispersionen mit kurzreichweitigen repulsiven Wechselwirkungen, sowie der Einfluss attraktiver Wechselwirkungen auf dieses Phasenverhalten untersucht. Die Arbeit ist dabei in zwei Teile gegliedert. Zunächst wurde das Phasenverhalten der Dispersionen ausschließlich mit repulsiven Wechselwirkungen mittels stetiger Scherung und passiver Mikrorheologie untersucht. Anschließend wurde der Einfluss attraktiver Wechselwirkungen auf die Mikrostruktur und des daraus abgeleiteten Fließverhaltens eingehend evaluiert.
- Published
- 2018
22. Tailored Flow Behavior of Biogenic Suspensions and Oils
- Author
-
Jampolski, Leon and Willenbacher, N.
- Subjects
Chemical engineering ,ddc:660 - Published
- 2018
- Full Text
- View/download PDF
23. Tailored Formulation of Capillary Suspensions as Precursor for Porous Sintered Materials
- Author
-
Maurath, Johannes and Willenbacher, N.
- Subjects
Kapillarsuspensionen ,Chemical engineering ,hochporöse Sinterwerkstoffe ,ddc:660 ,3D Druck ,hochporöse Glasfilter ,zelluläre Keramik - Abstract
Makroporöse Sintermaterialien haben eine große technische Bedeutung als Werkstoffe für Filtrationsmembranen, Katalysatorträger, Implantate oder in Leichtbauanwendungen. Der Schwerpunkt dieser experimentellen Dissertation liegt auf der maßgeschneiderten Formulierung von Kapillarsuspensionen zur Herstellung von Produkten mit besonderen Materialeigenschaften. Kapillarsuspensionen wurden so unter anderem eingesetzt um hochporöse Glasfilter mit großer Permeabilität und 3D-gedruckte zelluläre Leichtbaustrukturen mit hoher spezifischer Festigkeit herzustellen.
- Published
- 2018
- Full Text
- View/download PDF
24. Microstructure and Rheology of Colloidal Natural Clay Mineral Dispersions
- Author
-
Pilavtepe, Müge and Willenbacher, N.
- Subjects
Chemical engineering ,ddc:660 - Published
- 2018
- Full Text
- View/download PDF
25. Novel concept for the formulation of printing pastes for printable electronics based on the capillary suspension phenomenon
- Author
-
Schneider, Monica and Willenbacher, N.
- Subjects
Chemical engineering ,ddc:660 ,Capillary Suspensions ,Conductive Pastes - Abstract
Die Rheologie von Suspensionen kann durch die Zugabe von geringen Mengen einer zweiten Flüssigkeit, welche mit der kontinuierlichen Phase nicht mischbar ist, signifikant verändert werden. Das Fließverhalten der Suspension ändert sich von flüssig oder schwach viskoelastisch zu gelartig und es entstehen sogenannte Kapillarsuspensionen. Die Zugabe der Zweitflüssigkeit führt zu einem Anstieg der Viskosität und zur Ausbildung einer Fließgrenze oder zu einem deutlichen Anstieg einer bereits vorhandenen Fließgrenze, welche abhängig ist von der zugeführten Menge an Zweitflüssigkeit. Kleine Tropfen der zweiten flüssigen Phase lagern sich zwischen den Partikeln an und formen so, gemeinsam mit der festen Phase, ein stabiles Netzwerk. Die Ausbildung eines solchen Netzwerkes ist dabei unabhängig von den Benetzungseigenschaften der Zweitflüssigkeit. Unterschieden wird allerdings zwischen dem sogenannten „pendular state“ und dem „capillary state“. Im ersten Fall benetzt die Zweitflüssigkeit die Partikel besser als die kontinuierliche Phase. Für den Drei-Phasen-Kontaktwinkel 𝜃 gilt hier 𝜃90° ist die kontinuierliche Phase besser benetzend und ein stabiles Netzwerk entsteht hier durch die Abschirmung kleiner Tropfen der Zweitflüssigkeit durch die Bildung von Partikelclustern. Das Prinzip der Kapillarsuspensionen wurde schon als vielseitiges Konzept vorgestellt, zum Beispiel zur Formulierung von fettreduzierten Schokoladenaufstrichen oder als innovatives Verfahren zur Herstellung hochporöser Keramiken. Diese Dissertation beschäftigt sich nun mit der Formulierung von neuartigen, leitfähigen Pasten zur Herstellung von gedruckten Elektronikbauteilen unter Ausnutzung des Phänomens der Kapillarsuspensionen. Dies beinhaltet die Entwicklung eines neuen Formulierungskonzeptes ohne die Verwendung von rheologischen Additiven oder Stabilisatoren, wie sie in klassischen Formulierungen üblich sind. Erste Experimente wurden mit einem Modelsystem durchgeführt, hier Titandioxid (TiO2) Partikel dispergiert in n-Octanol und Wasser als Zweitflüssigkeit. Die Zugabe der Zweitflüssigkeit führt zu einem starken Netzwerk im „pendular state“, dessen Festigkeit als Funktion der Menge an Zweitflüssigkeit mittels Fließgrenzenmessungen quantifiziert wurde. Zusätzlich wurde auch die Viskosität im niedrigen (𝛾̇100 s-1) Scherratenbereich untersucht, um die Anwendbarkeit für den Druckprozess zu untersuchen. Alle untersuchten Suspensionen zeigen ein strukturviskoses Verhalten, was für die Anwendung als Druckpaste bevorzugt ist. Bei niedrigen Scherraten ist die Viskosität eine Funktion der Menge an Zweitflüssigkeit und steigt mit zunehmendem Anteil an Zweitflüssigkeit. Im Ruhezustand, z.B. während der Lagerung, verhindert das Kapillarnetzwerk so die Sedimentation und Agglomeration der festen Phase. Im hohen Scherratenbereich ist die Viskosität unabhängig von der Zweitflüssigkeit und nur eine Funktion des Feststoffvolumenanteils. Große Deformationen wie sie im Druckprozess auftreten wurden mittels oszillatorischer Messungen simuliert. Der Druckprozess wurde hierfür in drei Intervalle geteilt. Diese sollen den Ruhezustand (kleine Deformationsamplitude), den Druckprozess (große Deformationsamplitude) und den abschließenden Ruhezustand (kleine Deformationsamplitude) darstellen, um die korrespondierenden, viskoelastischen Materialeigenschaften der Kapillarsuspensionen mit unterschiedlichen Zweitflüssigkeitsanteilen zu untersuchen. Diese Versuche haben gezeigt, dass Kapillarsuspensionen und das damit verbundene Netzwerk aus Partikel und Zweitflüssigkeit im Ruhezustand eine hohe Elastizität aufweisen, welche sich zügig nach dem simulierten Druckprozess regeneriert und somit ein sauberes Druckbild ohne Verlaufen unterstützt. Abschließend wurde die auf TiO2 basierten Kapillarsuspensionen mittels Dispenser verdruckt und die Profile der gedruckten Linien mit einem 3D Lasermikroskop untersucht. Der Einfluss des Zweitflüssigkeitanteiles und die daraus resultierende Güte des Druckmotives wurden anhand des Aspektverhältnisses aus Höhe und Breite der Profile und dem Kontaktwinkel zwischen Probe und Substrat beurteilt. Durch die Zugabe der Zweitflüssigkeit und das daraus resultierende Kapillarnetzwerk wird ein Verlaufen des Druckmotives auf dem Trägermaterial unterdrückt und somit die Druckqualität verbessert. So erhöht sich der Kontaktwinkel und das Aspektverhältnis durch die Zugabe von 5 vol% Zweitflüssigkeit um den Faktor drei und die Linienbreite fällt auf 40% des Wertes, der mit der Suspension ohne Zweitflüssigkeit erzielt werden konnte. Zusätzlich zu den Fließ- und Druckeigenschaften, wurde das Modelsystem auch genutzt, um die Trocknung von Kapillarsuspensionen als Funktion der zugesetzten Menge an Zweitflüssigkeit zu untersuchen. Hierzu wurden kleine Mengen der Suspension als dünne Filme auf Polyester-Folien aufgebracht und zur Trocknung bei Raumtemperatur in einen Abzug gelegt. Die Auswertung der getrockneten Filme zeigt, dass ein bemerkenswerter Zusammenhang zwischen Zweitflüssigkeitsanteil und Rissbildung existiert. So ist die Anzahl der Risse und deren Größe mit zunehmender Menge an Zweitflüssigkeit in der ursprünglichen Kapillarsuspension Schritt für Schritt zurückgegangen. Trocknungsversuche wurden zusätzlich auch mit Zinkoxid (ZnO) und Aluminiumoxid (Al2O3) Partikeln durchgeführt. Diese wurden ebenso in n-Octanol dispergiert und Wasser als Zweitflüssigkeit zugegeben. Mit Zugabe der Zweitflüssigkeit bildet sich ein starkes Netzwerk aus, was in einem Anstieg der Fließgrenze deutlich wird. Ähnlich zu den TiO2 Proben, wird auch die Rissbildung wird mit zunehmendem Zweitflüssigkeitsanteil unterdrückt. Neben der Morphologie der getrockneten Proben mit ursprünglich unterschiedlichem Zweitflüssigkeitsanteil, unterscheiden sich diese auch hinsichtlich ihrer Trocknungsgeschwindigkeit. Infrarot-Absorptionsmessungen deuten darauf hin, dass die Trocknung durch die Zugabe der Zweitflüssigkeit signifikant beschleunigt wird. Weitere Versuche wurden mit leitfähigen Silber- und Nickelpartikeln durchgeführt. Kapillarsuspensionen wurden mit Paraffinöl als Hauptphase und Wasser bzw. Wasser-Dimethylformamid(DMF)-Gemischen als Zweitflüssigkeit hergestellt. Alternativ wurde Terpineol als Hauptphase eingesetzt. Fließgrenzenmessungen wurden durchgeführt, um die Ausbildung eines Kapillarnetzwerkes und dessen Festigkeit zu untersuchen. Die Bestimmung der Viskosität von Nickel-basierten Kapillarsuspensionen mit variierendem Zweitflüssigkeitsanteil zeigt ein strukturviskoses Fließverhalten, wie es für den Druckprozess gewünscht ist. Im niedrigen Scherratenbereich ist die Viskosität umso höher je mehr Zweitflüssigkeit enthalten ist. Durch diese erhöhte Viskosität kann die Stabilität der Paste zum Beispiel während der Lagerung gewährleistet werden. Im hohen Scherratenbereich zeigt die Formulierungsmethode als Kapillarsuspension keinen Einfluss. Die Viskosität ist unabhängig von der Menge an Zweitflüssigkeit und nur eine Funktion des Volumenanteils der festen Phase. Der Einfluss der Grenzflächenspannung zwischen Haupt- und Zweitflüssigkeit wurden anhand von Nickelpartikeln in Paraffinöl untersucht. Als Zweitflüssigkeit wurde Wasser, ein Wasser-DMF-Gemisch (je 50 vol%) und reines DMF eingesetzt. Wie erwartet, zeigt sich hier ein direkter Zusammenhang zwischen Grenzflächenspannung und gemessenen Fließgrenzen. Je höher die Grenzflächenspannung der Lösungsmittelkombination, desto höher war die gemessene Fließgrenze der jeweiligen Kapillarsuspension bei einer konstanten Menge an Zweitflüssigkeit. Um die elektrischen Eigenschaften der Kapillarsuspensionen mit Metallpartikeln zu untersuchen, wurden diese auf hitzebeständige Substrate aufgetragen und gesintert. Die resultierenden Schichtwiderstände wurden mittels der Van-der-Pauw-Methode bestimmt und mit den Werten für kommerzielle Druckpasten bzw. für ein patentiertes Formulierungsrezept verglichen. Zusätzlich wurden auch die Schichtdicken der gesinterten Filme untersucht. Anhand von Schichtdicken und Widerstandswerten kann gezeigt werden, dass Kapillarsuspensionen nach dem Sinterprozess dünnere und somit dichtere Schichten und zeitgleich auch eine hinreichend gute Leitfähigkeiten (ca. Faktor zwei gegenüber den kommerziellen Produkten) aufweisen. Die Profile der per Schablonendruck applizierten, feuchten Schichten wurden mit einem 3D Lasermikroskop untersucht. Mit Kapillarsuspensionen können aufgrund der hohen Fließgrenzen Profile mit steilen Kanten generiert werden, welche im Feinliniendruck gewünscht sind. Kapillarsuspensionen sind somit konkurrenzfähig gegenüber bereits etablierten, kommerziellen Pasten. Für Kapillarsuspensionen zeigt sich auch, dass die Linienbreite des Druckmotives durch die Zugabe der Zweitflüssigkeit deutlich reduziert wird. So spreiten Kapillarsuspensionen mit entsprechendem Zweitflüssigkeitsanteil kaum auf dem Substrat und erlauben so eine präzise Darstellung des Druckmotives beim hier verwendeten Schablonendruck. Im letzten Abschnitt werden weitere Formulierungsansätze für Kapillarsuspensionen vorgestellt, die sich darauf konzentrieren die bisher erzielten Leitfähigkeiten zu verbessern. Zum Beispiel wurden Nickelplättchen statt kugelförmiger Partikel verwendet, die Partikelgrößenverteilung oder auch die Sinteratmosphäre variiert.
- Published
- 2017
26. Verwendung von Kapillarsuspensionen zur Prozessierung von Lithium-Ionen Batterieelektroden
- Author
-
Bitsch, Boris and Willenbacher, N.
- Subjects
Chemical engineering ,ddc:660 - Abstract
Lithium-Ionen Batterien spielen als Energiespeicher beim Einsatz in Automobilen oder zur Speicherung elektrischen Stroms im Kontext der Energiewende eine große Rolle. Im Rahmen dieser Dissertation wurde die Fabrikation von Anodenschichten mittels eines neuartigen Slurrykonzepts basierend auf Kapillarsuspensionen entwickelt. Die Morphologie der resultierenden Schichten lässt sich gezielt einstellen, was zur Herstellung von Anoden mit verbesserten elektrochemischen Eigenschaften genutzt wurde.
- Published
- 2017
27. Verwendung von Kapillarsuspensionen als Precursor für die Herstellung hochporöser Sinterwerkstoffe
- Author
-
Dittmann, Jens and Willenbacher, N.
- Subjects
Kapillarsuspension ,Chemical engineering ,poröse Materialien ,ddc:660 ,Strukturbildung - Abstract
Im Rahmen der vorliegenden Dissertation wird die Formulierung von Kapillarsuspensionen und deren Verwendung als Precusormaterial zur Herstellung hochporöser Sinterwerkstoffe betrachtet. Neben der Verfahrensentwicklung wurden Grundlagenuntersuchungen am Pastensystem sowie daraus hergestellter Sinterteile durchgeführt. Am Beispiel eines keramischen Modellsystems werden wesentliche Eigenschaften von Kapillarsuspensionen mittels systematischer Parametervariation evaluiert.
- Published
- 2015
28. Rheology of Protein Foams
- Author
-
Lexis, Meike and Willenbacher, N.
- Subjects
Condensed Matter::Soft Condensed Matter ,Chemical engineering ,ddc:660 - Abstract
Foams with gas volume fractions f>fc possess peculiar rheological properties, a minimum stress called yield stress is needed to initiate foam flow and below foams behave as viscoelastic solids with a storage modulus G'>G''. Beyond the widely accepted physical models predicting elastic modulus and yield stress from the Laplace pressure within the gas bubbles and the gas volume fraction these quantities strongly depend on corresponding interfacial properties.
- Published
- 2015
- Full Text
- View/download PDF
29. Food capillary suspensions
- Author
-
Wollgarten, Susanne Elisabeth and Willenbacher, N.
- Subjects
Chemical engineering ,fungi ,ddc:660 ,food and beverages - Abstract
When a small amount of a secondary immiscible fluid is added to a particle suspension, the rheological properties of the suspension can alter dramatically. The secondary liquid can create a sample-spanning network due to capillary bridges formed between the particles, inducing a transition from a fluid-like to a gel-like state. In this thesis it has been investigated how capillary suspensions can be used to create novel food products from suspensions with oil and water as bulk fluids.
- Published
- 2015
30. A Multifunctional Nanostructured Hydrogel as a Platform for Deciphering Niche Interactions of Hematopoietic Stem and Progenitor Cells.
- Author
-
Ludwig-Husemann A, Schertl P, Shrivastava A, Geckle U, Hafner J, Schaarschmidt F, Willenbacher N, Freudenberg U, Werner C, and Lee-Thedieck C
- Subjects
- Humans, Stem Cell Niche, Cell Differentiation drug effects, Cell Movement drug effects, Cells, Cultured, Hematopoietic Stem Cells cytology, Hematopoietic Stem Cells metabolism, Nanostructures chemistry, Chemokine CXCL12 metabolism, Chemokine CXCL12 chemistry, Chemokine CXCL12 pharmacology, Hydrogels chemistry
- Abstract
For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α
4 β1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols., (© 2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
31. Thermal-Rectified Gradient Porous Polymeric Film for Solar-Thermal Regulatory Cooling.
- Author
-
Wang Y, Zhang X, Liu S, Liu Y, Zhou Q, Zhu T, Miao YE, Willenbacher N, Zhang C, and Liu T
- Abstract
Solar-thermal regulation concerning thermal insulation and solar modulation is pivotal for cooling textiles and smart buildings. Nevertheless, a contradiction arises in balancing the demand to prevent external heat infiltration with the efficient dissipation of excess heat from enclosed spaces. Here, a concentration-gradient polymerization strategy is presented for fabricating a gradient porous polymeric film comprising interconnected polymeric microspheres. This method involves establishing an electric field-driven gradient distribution of charged crosslinkers in the precursor solution, followed by subsequent polymerization and freeze-drying processes. The resulting porous film exhibits a significant porosity gradient along its thickness, leading to exceptional unidirectional thermal insulation capabilities with a thermal rectification factor of 21%. The gradient porous film, with its thermal rectification properties, effectively reconciles the conflicting demands of diverse thermal conductivity for cooling unheated and spontaneously heated enclosed spaces. Consequently, the gradient porous film demonstrates remarkable enhancements in solar-thermal management, achieving temperature reductions of 3.0 and 4.1 °C for unheated and spontaneously heated enclosed spaces, respectively, compared to uniform porous films. The developed gradient-structured porous film thus holds promise for the development of thermal-rectified materials tailored to regulate solar-thermal conditions within enclosed environments., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
32. Targeted micro-heterogeneity in bioinks allows for 3D printing of complex constructs with improved resolution and cell viability.
- Author
-
Maciel BR, Grimm A, Oelschlaeger C, Schepers U, and Willenbacher N
- Subjects
- Humans, Cell Survival, Hydrogels, Printing, Three-Dimensional, Tissue Engineering methods, Tissue Scaffolds, Gelatin, Bioprinting methods
- Abstract
Three-dimensional bioprinting is an evolving versatile technique for biomedical applications. Ideal bioinks have complex micro-environment that mimic human tissue, allow for good printing quality and provide high cell viability after printing. Here we present two strategies for enhancing gelatin-based bioinks heterogeneity on a 1-100 µ m length scale resulting in superior printing quality and high cell viability. A thorough spatial and micro-mechanical characterization of swollen hydrogel heterogeneity was done using multiple particle tracking microrheology. When poly(vinyl alcohol) is added to homogeneous gelatin gels, viscous inclusions are formed due to micro-phase separation. This phenomenon leads to pronounced slip and superior printing quality of complex 3D constructs as well as high human hepatocellular carcinoma (HepG2) and normal human dermal fibroblast (NHDF) cell viability due to reduced shear damage during extrusion. Similar printability and cell viability results are obtained with gelatin/nanoclay composites. The formation of polymer/nanoclay clusters reduces the critical stress of gel fracture, which facilitates extrusion, thus enhancing printing quality and cell viability. Targeted introduction of micro-heterogeneities in bioinks through micro-phase separation is an effective technique for high resolution 3D printing of complex constructs with high cell viability. The size of the heterogeneities, however, has to be substantially smaller than the desired feature size in order to achieve good printing quality., (Creative Commons Attribution license.)
- Published
- 2023
- Full Text
- View/download PDF
33. A holistic view on the role of egg yolk in Old Masters' oil paints.
- Author
-
Ranquet O, Duce C, Bramanti E, Dietemann P, Bonaduce I, and Willenbacher N
- Abstract
Old Masters like Botticelli used paints containing mixtures of oils and proteins, but "how" and "why" this was done is still not understood. Here, egg yolk is used in combination with two pigments to evaluate how different repartition of proteinaceous binder can be used to control the flow behavior as well as drying kinetics and chemistry of oil paints. Stiff paints enabling pronounced impasto can be achieved, but paint stiffening due to undesired uptake of humidity from the environment can also be suppressed, depending on proteinaceous binder distribution and colloidal paint microstructure. Brushability at high pigment loading is improved via reduction of high shear viscosity and wrinkling can be suppressed adjusting a high yield stress. Egg acts as antioxidant, slowing down the onset of curing, and promoting the formation of cross-linked networks less prone to oxidative degradation compared to oil alone, which might improve the preservation of invaluable artworks., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
34. Robust Soil Water Potential Sensor to Optimize Irrigation in Agriculture.
- Author
-
Menne D, Hübner C, Trebbels D, and Willenbacher N
- Subjects
- Agriculture, Porosity, Soil, Water analysis
- Abstract
Extreme weather phenomena are on the rise due to ongoing climate change. Therefore, the need for irrigation in agriculture will increase, although it is already the largest consumer of water, a valuable resource. Soil moisture sensors can help to use water efficiently and economically. For this reason, we have recently presented a novel soil moisture sensor with a high sensitivity and broad measuring range. This device does not measure the moisture in the soil but the water available to plants, i.e., the soil water potential (SWP). The sensor consists of two highly porous (>69%) ceramic discs with a broad pore size distribution (0.5 to 200 μm) and a new circuit board system using a transmission line within a time-domain transmission (TDT) circuit. This detects the change in the dielectric response of the ceramic discs with changing water uptake. To prove the concept, a large number of field tests were carried out and comparisons were made with commercial soil water potential sensors. The experiments confirm that the sensor signal is correlated to the soil water potential irrespective of soil composition and is thus suitable for the optimization of irrigation systems.
- Published
- 2022
- Full Text
- View/download PDF
35. Phase-Change-Enabled, Rapid, High-Resolution Direct Ink Writing of Soft Silicone.
- Author
-
Wang Y and Willenbacher N
- Abstract
Soft silicone is an ideal flexible material for application, e.g., in soft robotics, flexible electronics, bionics, or implantable biomedical devices. However, gravity-driven sagging, filament stretching, and deformation can cause inevitable defects during rapid manufacturing, making it hard to obtain complex, high-resolution 3D silicone structures with direct ink writing (DIW) technology. Here, rapid DIW of soft silicone enabled by a phase-change-induced, reversible change of the ink's hierarchical microstructure is presented. During printing, the silicone-based ink, containing silica nanoparticles and wax microparticles, is extruded from a heated nozzle into a cold environment under controlled stress. The wax phase change (solid-liquid-solid) during printing rapidly destroys and rebuilds the particle networks, realizing fast control of the ink flow behavior and printability. This high-operating-temperature DIW method is fast (maximum speed ≈3100 mm min
-1 ) and extends the DIW scale range of soft silicone. The extruded filaments have small diameters (50 ± 5 µm), and allow for large spans (≈13-fold filament diameter) and high aspect ratios (≈1), setting a new benchmark in the DIW of soft silicone. Printed silicone structures exhibit excellent performance as flexible sensors, superhydrophobic surfaces, and shape-memory bionic devices, illustrating the potential of the new 3D printing strategy., (© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.)- Published
- 2022
- Full Text
- View/download PDF
36. Giant Functional Properties in Porous Electroceramics through Additive Manufacturing of Capillary Suspensions.
- Author
-
Menne D, Lemos da Silva L, Rotan M, Glaum J, Hinterstein M, and Willenbacher N
- Abstract
Dedicated hierarchical structuring of functional ceramics can be used to shift the limits of functionality. This work presents the manufacturing of highly open porous, hierarchically structured barium titanate ceramics with 3-3 connectivity via direct ink writing of capillary suspension-type inks. The pore size of the printed struts (∼1 μm) is combined with a printed mesostructure (∼100 μm). The self-organized particle network, driven by strong capillary forces in the ternary solid/fluid/fluid ink, results in a high strut porosity, and the distinct flow properties of the ink allow for printing high strut size to pore size ratios, resulting in total porosities >60%. These unique and highly porous additive manufactured log-pile structures with closed bottom and top layers enable tailored dielectric and electromechanical coupling, resulting in an energy harvesting figure of merit FOM
33 more than four times higher than any documented data for barium titanate. This clearly demonstrates that combining additive manufacturing of capillary suspensions in combination with appropriate sintering allows for creation of complex architected 3D structures with unprecedented properties. This opens up opportunities in a broad variety of applications, including electromechanical energy harvesting, electrode materials for batteries or fuel cells, thermoelectrics, or bone tissue engineering with piezoelectrically stimulated cell growth.- Published
- 2022
- Full Text
- View/download PDF
37. Comparative study on interfacial and foaming properties of glycolipids in relation to the gas applied for foam generation.
- Author
-
Hollenbach R, Oeppling S, Delavault A, Völp AR, Willenbacher N, Rudat J, Ochsenreither K, and Syldatk C
- Abstract
Glycolipids are biosurfactants with a wide range of structural diversity. They are biodegradable, based on renewables, ecocompatible and exhibit high surface activity. Still, studies comparing glycolipids and conventional surfactants in terms of interfacial properties and foaming performance are lacking. Here, we compared interfacial and foaming properties of microbial and enzymatically synthesized glycolipids to those of the widely-used, conventional surfactant sodium dodecyl sulfate (SDS). The enzymatically produced sorbose monodecanoate, as well as microbially produced di-rhamno-di-lipids exhibited high foam stabilizing properties, similar to those of SDS. However, sophorolipid and mono-rhamno-di-lipids did not produce metastable foams. An appropriate selection of head and tail groups depending on the application of interest is therefore necessary. Then, glycolipids can serve as an ecofriendly and efficient alternative to petroleum-based surfactants, even at substantially lower concentrations than e.g. SDS. Moreover, the influence of three foaming gases on the foaming properties of the glycolipids was evaluated. Slightly higher foam stability and lower coarsening rates were determined for sorbose monodecanoate when using nitrogen as the foaming gas instead of air. Foams generated with carbon dioxide were not metastable, no matter which surfactant was used., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)
- Published
- 2021
- Full Text
- View/download PDF
38. Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting.
- Author
-
Göckler T, Haase S, Kempter X, Pfister R, Maciel BR, Grimm A, Molitor T, Willenbacher N, and Schepers U
- Subjects
- Gelatin, Hydrogels, Norbornanes, Printing, Three-Dimensional, Sulfhydryl Compounds, Tissue Engineering, Tissue Scaffolds, Bioprinting
- Abstract
Photocurable gelatin-based hydrogels have established themselves as powerful bioinks in tissue engineering due to their excellent biocompatibility, biodegradability, light responsiveness, thermosensitivity and bioprinting properties. While gelatin methacryloyl (GelMA) has been the gold standard for many years, thiol-ene hydrogel systems based on norbornene-functionalized gelatin (GelNB) and a thiolated crosslinker have recently gained increasing importance. In this paper, a highly reproducible water-based synthesis of GelNB is presented, avoiding the use of dimethyl sulfoxide (DMSO) as organic solvent and covering a broad range of degrees of functionalization (DoF: 20% to 97%). Mixing with thiolated gelatin (GelS) results in the superfast curing photoclick hydrogel GelNB/GelS. Its superior properties over GelMA, such as substantially reduced amounts of photoinitiator (0.03% (w/v)), superfast curing (1-2 s), higher network homogeneity, post-polymerization functionalization ability, minimal cross-reactivity with cellular components, and improved biocompatibility of hydrogel precursors and degradation products lead to increased survival of primary cells in 3D bioprinting. Post-printing viability analysis revealed excellent survival rates of > 84% for GelNB/GelS bioinks of varying crosslinking density, while cell survival for GelMA bioinks is strongly dependent on the DoF. Hence, the semisynthetic and easily accessible GelNB/GelS hydrogel is a highly promising bioink for future medical applications and other light-based biofabrication techniques., (© 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
39. Shear modulus and yield stress of foams: contribution of interfacial elasticity.
- Author
-
Völp AR and Willenbacher N
- Subjects
- Elasticity, Polymers, Surface Tension, Surface-Active Agents, Water
- Abstract
The link between interfacial elasticity of foaming solutions and the elasticity and yield stress of their aqueous foams is probed for a variety of surfactant, block-copolymer, protein, food, and particle-stabilized (Pickering) foams. We measured interfacial tension σ and interfacial elastic moduli of foaming solutions in dilation E
∞ as well as in shear at concentrations suitable for foaming and compared them to the shear modulus and yield stress of corresponding foams normalized by bubbles' Sauter radius R32 and foams' gas volume fraction. The interfacial shear modulus was only measurable for the foaming solutions including proteins or nanoparticles. For these systems the foam shear modulus scaled reasonably well with . The interfacial dilational modulus was accessible for all investigated systems and the foam shear modulus as well as yield stress scaled with a generalized Laplace pressure (σ + 2E∞ )/R32 . But foams stabilized by nanoparticles or aggregated proteins exhibited even higher shear modulus and yield stress values not captured by the proposed scaling with the generalized Laplace pressure and also show an unexpectedly high dependence of these characteristics on the gas volume fraction. We attribute this to attractive forces between particles and/or structure formation across the lamellae that become increasingly dominant as the lamellae narrow down during foam drainage.- Published
- 2021
- Full Text
- View/download PDF
40. Microrheology imaging of fiber suspensions - a case study for lyophilized collagen I in HCl solutions.
- Author
-
Hafner J, Oelschlaeger C, and Willenbacher N
- Abstract
In fiber suspensions with low optical contrast, the in situ characterization of structural properties with conventional microscopy methods fails. However, overlaying subsequent images of multiple particle tracking (MPT) videos including short trajectories usually discarded in MPT analysis allowed for direct visualization of individual fibers and the network structure of lyophilized collagen I (Coll) distributed in hydrochloric acid solutions. MPT yielded a broad distribution of mean square displacements (MSDs). Freely diffusing tracer particles yielded viscosities indicating that, irrespective of concentration, a constant amount of Coll is dissolved in the aqueous phase. Particles found elastically trapped within fibrous Coll structures exhibited a broad range of time-independent MSDs and we propose a structure comprising multiple fiber bundles with dense regions inaccessible to tracers and elastic regions of different stiffness in between. Bulky aggregates inaccessible to the 0.2 μm tracers exist even at low Coll concentrations, a network of slender fibers evolves above the sol-gel transition and these fibers densify with increasing Coll concentration. This novel MPT-based imaging technique possesses great potential to characterize the fiber distribution in and structural properties of a broad range of biological and technical suspensions showing low contrast when imaged with conventional techniques. Thus, MPT imaging and microrheology will help to better understand the effect of fiber distribution and network structure on the viscoelastic properties of complex suspensions.
- Published
- 2020
- Full Text
- View/download PDF
41. Interfacial and Foaming Properties of Tailor-Made Glycolipids-Influence of the Hydrophilic Head Group and Functional Groups in the Hydrophobic Tail.
- Author
-
Hollenbach R, Völp AR, Höfert L, Rudat J, Ochsenreither K, Willenbacher N, and Syldatk C
- Subjects
- Hydrophobic and Hydrophilic Interactions, Viscosity, Water chemistry, Glycolipids chemistry, Micelles, Surface-Active Agents chemistry
- Abstract
Glycolipids are a class of biodegradable surfactants less harmful to the environment than petrochemically derived surfactants. Here we discuss interfacial properties, foam stability, characterized in terms of transient foam height, gas volume fraction and bubble diameter as well as texture of seven enzymatically synthesized surfactants for the first time. Glycolipids consisting of different head groups, namely glucose, sorbitol, glucuronic acid and sorbose, combined with different C10 acyl chains, namely decanoate, dec-9-enoate and 4-methyl-nonanoate are compared. Equilibrium interfacial tension values vary between 24.3 and 29.6 mN/m, critical micelle concentration varies between 0.7 and 3.0 mM. In both cases highest values were found for the surfactants with unsaturated or branched tail groups. Interfacial elasticity and viscosity, however, were significantly reduced in these cases. Head and tail group both affect foam stability. Foams from glycolipids with sorbose and glucuronic acid derived head groups showed higher stability than those from surfactants with glucose head group, sorbitol provided lowest foam stability. We attribute this to different head group hydration also showing up in the time to reach equilibrium interfacial adsorption. Unsaturated tail groups reduced whereas branching enhanced foam stability compared to the systems with linear, saturated tail. Moreover, the tail group strongly influences foam texture. Glycolipids with unsaturated tail groups produced foams quickly collapsing even at smallest shear loads, whereas the branched tail group yielded a higher modulus than the linear tails. Normalized shear moduli for the systems with different head groups varied in a narrow range, with the highest value found for decylglucuronate.
- Published
- 2020
- Full Text
- View/download PDF
42. Monitoring matrix remodeling in the cellular microenvironment using microrheology for complex cellular systems.
- Author
-
Hafner J, Grijalva D, Ludwig-Husemann A, Bertels S, Bensinger L, Raic A, Gebauer J, Oelschlaeger C, Bastmeyer M, Bieback K, Lee-Thedieck C, and Willenbacher N
- Subjects
- Cell Differentiation, Cellular Microenvironment, Extracellular Matrix, Humans, Tissue Scaffolds, Mesenchymal Stem Cells, Osteogenesis
- Abstract
Multiple particle tracking (MPT) microrheology was employed for monitoring the development of extracellular matrix (ECM) mechanical properties in the direct microenvironment of living cells. A customized setup enabled us to overcome current limitations: (i) Continuous measurements were enabled using a cell culture chamber, with this, matrix remodeling by fibroblasts in the heterogeneous environment of macroporous scaffolds was monitored continuously. (ii) Employing tracer laden porous scaffolds for seeding human mesenchymal stem cells (hMSCs), we followed conventional differentiation protocols. Thus, we were, for the first time able to study the massive alterations in ECM elasticity during hMSC differentiation. (iii) MPT measurements in 2D cell cultures were enabled using a long distance objective. Exemplarily, local mechanical properties of the ECM in human umbilical vein endothelial cell (HUVEC) cultures, that naturally form 2D layers, were investigated scaffold-free. Using our advanced setup, we measured local, apparent elastic moduli G
0,app in a range between 0.08 and 60 Pa. For fibroblasts grown in collagen-based scaffolds, a continuous decrease of local matrix elasticity resulted during the first 10 hours after seeding. The osteogenic differentiation of hMSC cells cultivated in similar scaffolds, led to an increase of G0,app by 100 %, whereas after adipogenic differentiation it was reduced by 80 %. The local elasticity of ECM that was newly secreted by HUVECs increased significantly upon addition of protease inhibitor and in high glucose conditions even a twofold increase in G0,app was observed. The combination of these advanced methods opens up new avenues for a broad range of investigations regarding cell-matrix interactions and the propagation of ECM mechanical properties in complex biological systems. STATEMENT OF SIGNIFICANCE: Cells sense the elasticity of their environment on a micrometer length scale. For studying the local elasticity of extracellular matrix (ECM) in the direct environment of living cells, we employed an advanced multipleparticle tracking microrheology setup. MPT is based on monitoring the Brownian motion oftracer particles, which is restricted by the surrounding network. Network elasticity can thusbe quantified. Overcoming current limitations, we realized continuous investigations of ECM elasticityduring fibroblast growth. Furthermore, MPT measurements of stem cell ECM showed ECMstiffening during osteogenic differentiation and softening during adipogenic differentiation.Finally, we characterized small amounts of delicate ECM newly secreted in scaffold-freecultures of endothelial cells, that naturally form 2D layers., (Copyright © 2020. Published by Elsevier Ltd.)- Published
- 2020
- Full Text
- View/download PDF
43. Effect of Polymeric Binders on Dispersion of Active Particles in Aqueous LiFePO 4 -Based Cathode Slurries as well as on Mechanical and Electrical Properties of Corresponding Dry Layers.
- Author
-
Gordon R, Kassar M, and Willenbacher N
- Abstract
We investigated the effect of carboxymethyl cellulose (CMC) and the particulate fluorine/acrylate hybrid polymer (FAHP) on the flow behavior of LiFePO
4 -based cathode slurries as well as on electrical and mechanical properties of the corresponding dry layers. CMC dissolves in water and partly adsorbs on the active particles. Thus, it has a strong impact on particle dispersion and a critical CMC concentration distinguished by a minimum in yield stress and high shear viscosity is found, indicating an optimum state of particle dispersion. In contrast, the nanoparticulate FAHP binder has no effect on slurry rheology. The electrical conductivity of the dry layer exhibits a maximum at a CMC concentration corresponding to the minimum in slurry viscosity but monotonically decreases with increasing FAHP concentration. Adhesion to the current collector is provided by FAHP, and the line load in peel tests strongly increases with FAHP concentration, whereas CMC does not contribute to adhesion. The electrical conductivity and adhesion values obtained here excel reported values for similar aqueous LiFePO4 -based cathode layers using alternative polymeric binders. Both CMC and FAHP contribute to the cohesive strength of the layers; the contribution of CMC, however, is stronger than that of FAHP despite its lower intrinsic mechanical strength. We attribute this to its impact on the cathode microstructure since high CMC concentrations result in a strong alignment of LiFePO4 particles, which yields superior cohesive strength., Competing Interests: The authors declare no competing financial interest., (Copyright © 2020 American Chemical Society.)- Published
- 2020
- Full Text
- View/download PDF
44. Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings.
- Author
-
Hu Y, Domínguez CM, Bauer J, Weigel S, Schipperges A, Oelschlaeger C, Willenbacher N, Keppler S, Bastmeyer M, Heißler S, Wöll C, Scharnweber T, Rabe KS, and Niemeyer CM
- Subjects
- Cell Adhesion drug effects, Cell Survival drug effects, Coated Materials, Biocompatible pharmacology, DNA chemistry, DNA genetics, DNA metabolism, Humans, Hydrogels chemistry, MCF-7 Cells, Materials Testing methods, Microscopy, Electron, Scanning, Microscopy, Electron, Transmission, Nanocomposites ultrastructure, Tensile Strength, Viscosity, Coated Materials, Biocompatible chemistry, Nanocomposites chemistry, Nanotubes, Carbon chemistry, Silicon Dioxide chemistry
- Abstract
Biomedical applications require substrata that allow for the grafting, colonization and control of eukaryotic cells. Currently available materials are often limited by insufficient possibilities for the integration of biological functions and means for tuning the mechanical properties. We report on tailorable nanocomposite materials in which silica nanoparticles are interwoven with carbon nanotubes by DNA polymerization. The modular, well controllable and scalable synthesis yields materials whose composition can be gradually adjusted to produce synergistic, non-linear mechanical stiffness and viscosity properties. The materials were exploited as substrata that outperform conventional culture surfaces in the ability to control cellular adhesion, proliferation and transmigration through the hydrogel matrix. The composite materials also enable the construction of layered cell architectures, the expansion of embryonic stem cells by simplified cultivation methods and the on-demand release of uniformly sized stem cell spheroids.
- Published
- 2019
- Full Text
- View/download PDF
45. Bottom-Up Assembly of DNA-Silica Nanocomposites into Micrometer-Sized Hollow Spheres.
- Author
-
Hu Y, Grösche M, Sheshachala S, Oelschlaeger C, Willenbacher N, Rabe KS, and Niemeyer CM
- Subjects
- Hybridization, Genetic, Nanotechnology, Particle Size, Polymerization, Porosity, Surface Properties, DNA chemistry, Microspheres, Nanocomposites chemistry, Silicon Dioxide chemistry
- Abstract
Although DNA nanotechnology has developed into a highly innovative and lively field of research at the interface between chemistry, materials science, and biotechnology, there is still a great need for methodological approaches for bridging the size regime of DNA nanostructures with that of micrometer- and millimeter-sized units for practical applications. We report on novel hierarchically structured composite materials from silica nanoparticles and DNA polymers that can be obtained by self-assembly through the clamped hybridization chain reaction. The nanocomposite materials can be assembled into thin layers within microfluidically generated water-in-oil droplets to produce mechanically stabilized hollow spheres with uniform size distributions at high throughput rates. The fact that cells can be encapsulated in these microcontainers suggests that our concept not only contributes to the further development of supramolecular bottom-up manufacturing, but can also be exploited for applications in the life sciences., (© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.)
- Published
- 2019
- Full Text
- View/download PDF
46. A Phenolic Acid Decarboxylase-Based All-Enzyme Hydrogel for Flow Reactor Technology.
- Author
-
Mittmann E, Gallus S, Bitterwolf P, Oelschlaeger C, Willenbacher N, Niemeyer CM, and Rabe KS
- Abstract
Carrier-free enzyme immobilization techniques are an important development in the field of efficient and streamlined continuous synthetic processes using microreactors. Here, the use of monolithic, self-assembling all-enzyme hydrogels is expanded to phenolic acid decarboxylases. This provides access to the continuous flow production of p -hydroxystyrene from p -coumaric acid for more than 10 h with conversions ≥98% and space time yields of 57.7 g·(d·L)
-1 . Furthermore, modulation of the degree of crosslinking in the hydrogels resulted in a defined variation of the rheological behavior in terms of elasticity and mesh size of the corresponding materials. This work is addressing the demand of sustainable strategies for defunctionalization of renewable feedstocks.- Published
- 2019
- Full Text
- View/download PDF
47. Ultrastretchable Conductive Elastomers with a Low Percolation Threshold for Printed Soft Electronics.
- Author
-
Sun H, Han Z, and Willenbacher N
- Abstract
Stretchable conductors are required for next-generation soft electronics. Achieving both high electrical conductivity and high stretchability in conductors composed of elastomers and conductive fillers, however, is challenging. Here, a generic, versatile strategy is reported for producing ultrastretchable conductors exhibiting both superior electrical conductivity (>10
3 S/cm) and stretchability (>1600%). This is achieved by adding small amounts of immiscible secondary fluid into silver (Ag)-filled inks. Capillary forces in these ternary systems induce the self-assembly of conductive particle networks at a low percolation threshold (6-7 vol %), cutting silver consumption by more than 2/3 compared to conventional conductive elastomers. Ag-filled polydimethylsiloxane exhibits superior cyclic durability sustaining 100% tensile strain for 1000 cycles with only a minor loss of conductivity. Ag-filled thermoplastic polyurethane displays unprecedented reversibility with nonretarded switching from conductive to nonconductive states during repeated stretching up to 200% strain. Patterned strain sensors and conductive wirings were 3D-printed to demonstrate the technical feasibility.- Published
- 2019
- Full Text
- View/download PDF
48. Real-time monitoring of DNA immobilization and detection of DNA polymerase activity by a microfluidic nanoplasmonic platform.
- Author
-
Roether J, Chu KY, Willenbacher N, Shen AQ, and Bhalla N
- Subjects
- DNA, Single-Stranded chemistry, Equipment Design, Lab-On-A-Chip Devices, Nanostructures chemistry, Nanostructures ultrastructure, DNA Polymerase I analysis, Escherichia coli enzymology, Immobilized Nucleic Acids chemistry, Microfluidic Analytical Techniques instrumentation, Surface Plasmon Resonance instrumentation
- Abstract
DNA polymerase catalyzes the replication of DNA, one of the key steps in cell division. The control and understanding of this reaction owns great potential for the fundamental study of DNA-enzyme interactions. In this context, we developed a label-free microfluidic biosensor platform based on the principle of localized surface plasmon resonance (LSPR) to detect the DNA-polymerase reaction in real-time. Our microfluidic LSPR chip integrates a polydimethylsiloxane (PDMS) channel bonded with a nanoplasmonic substrate, which consists of densely packed mushroom-like nanostructures with silicon dioxide stems (~40 nm) and gold caps (~22 nm), with an average spacing of 19 nm. The LSPR chip was functionalized with single-stranded DNA (ssDNA) template (T30), spaced with hexanedithiol (HDT) in a molar ratio of 1:1. The DNA primer (P8) was then attached to T30, and the second strand was subsequently elongated by DNA polymerase assembling nucleotides from the surrounding fluid. All reaction steps were detected in-situ inside the microfluidic LSPR chip, at room temperature, in real-time, and label-free. In addition, the sensor response was successfully correlated with the amount of DNA and HDT molecules immobilized on the LSPR sensor surface. Our platform represents a benchmark in developing microfluidic LSPR chips for DNA-enzyme interactions, further driving innovations in biosensing technologies., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
49. Valency engineering of monomeric enzymes for self-assembling biocatalytic hydrogels.
- Author
-
Bitterwolf P, Gallus S, Peschke T, Mittmann E, Oelschlaeger C, Willenbacher N, Rabe KS, and Niemeyer CM
- Abstract
All-enzyme hydrogels are efficient reagents for continuous flow biocatalysis. These materials can be obtained by self-assembly of two oligomeric enzymes, modified with the complementary SpyTag and SpyCatcher units. To facilitate access to the large proportion of biocatalytically relevant monomeric enzymes, we demonstrate that the tagging valency of the monomeric ( S )-stereoselective ketoreductase Gre2p from Saccharomyces cerevisiae can be designed to assemble stable, active hydrogels with the cofactor-regenerating glucose 1-dehydrogenase GDH from Bacillus subtilis . Mounted in microfluidic reactors, these gels revealed high conversion rates and stereoselectivity in the reduction of prochiral methylketones under continuous flow for more than 8 days. The sequential use as well as parallelization by 'numbering up' of the flow reactor modules demonstrate that this approach is suitable for syntheses on the semipreparative scale., (This journal is © The Royal Society of Chemistry 2019.)
- Published
- 2019
- Full Text
- View/download PDF
50. Deformation of soft particles with controlled elasticity by liquid-liquid interfacial tension.
- Author
-
Sapotta B, Kim JQ, Willenbacher N, and Choi SQ
- Abstract
Herein we report the deformation of PDMS-based particles at a liquid-liquid interface at varying degrees of softness. Direct visualization of the particle adsorption to the interface reveals at least five different modes of deformation from the complete spreading of a polymer resin droplet to a non-deforming, rigid particle.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.