1. Hierarchical representation learning for next basket recommendation
- Author
-
Wenhua Zeng, Junjie Liu, and Bo Zhang
- Subjects
Sequential recommendation ,Dynamic representation ,Next basket recommendation ,Computer engineering. Computer hardware ,TK7885-7895 ,Electronic computers. Computer science ,QA75.5-76.95 - Abstract
The task of next basket recommendation is pivotal for recommender systems. It involves predicting user actions, such as the next product purchase or movie selection, by exploring sequential purchase behavior and integrating users’ general preferences. These elements may converge and influence users’ subsequent choices. The challenge intensifies with the presence of varied user purchase sequences in the training set, as indiscriminate incorporation of these sequences can introduce superfluous noise. In response to these challenges, we propose an innovative approach: the Selective Hierarchical Representation Model (SHRM). This model effectively integrates transactional data and user profiles to discern both sequential purchase transactions and general user preferences. The SHRM’s adaptability, particularly in employing nonlinear aggregation operations on user representations, enables it to model complex interactions among various influencing factors. Notably, the SHRM employs a Recurrent Neural Network (RNN) to capture extended dependencies in recent purchasing activities. Moreover, it incorporates an innovative sequence similarity task, grounded in a k-plet sampling strategy. This strategy clusters similar sequences, significantly mitigating the learning process’s noise impact. Through empirical validation on three diverse real-world datasets, we demonstrate that our model consistently surpasses leading benchmarks across various evaluation metrics, establishing a new standard in next-basket recommendation.
- Published
- 2024
- Full Text
- View/download PDF