1. A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope
- Author
-
Collaboration, SPIDER, Ade, PAR, Amiri, M, Benton, SJ, Bergman, AS, Bihary, R, Bock, JJ, Bond, JR, Bonetti, JA, Bryan, SA, Chiang, HC, Contaldi, CR, Doré, O, Duivenvoorden, AJ, Eriksen, HK, Farhang, M, Filippini, JP, Fraisse, AA, Freese, K, Galloway, M, Gambrel, AE, Gandilo, NN, Ganga, K, Gualtieri, R, Gudmundsson, JE, Halpern, M, Hartley, J, Hasselfield, M, Hilton, G, Holmes, W, Hristov, VV, Huang, Z, Irwin, KD, Jones, WC, Karakci, A, Kuo, CL, Kermish, ZD, Leung, JS-Y, Li, S, Mak, DSY, Mason, PV, Megerian, K, Moncelsi, L, Morford, TA, Nagy, JM, Netterfield, CB, Nolta, M, O'Brient, R, Osherson, B, Padilla, IL, Racine, B, Rahlin, AS, Reintsema, C, Ruhl, JE, Runyan, MC, Ruud, TM, Shariff, JA, Shaw, EC, Shiu, C, Soler, JD, Song, X, Trangsrud, A, Tucker, C, Tucker, RS, Turner, AD, List, JFVD, Weber, AC, Wehus, IK, Wen, S, Wiebe, DV, Young, EY, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), SPIDER, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Science and Technology Facilities Council (STFC)
- Subjects
noise ,cosmological model ,data analysis method ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,ANGULAR POWER SPECTRUM ,CIRCULAR-POLARIZATION ,FOS: Physical sciences ,cosmic background radiation: polarization ,detector: noise ,STATISTICAL-ANALYSIS ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,POLARIMETRY ,Monte Carlo: Markov chain ,cosmic background radiation: B-mode ,DESIGN ,0201 Astronomical and Space Sciences ,MICROWAVE BACKGROUND DATA ,numerical calculations ,Astrophysics::Galaxy Astrophysics ,ANISOTROPY ,0306 Physical Chemistry (incl. Structural) ,polarization: linear ,Science & Technology ,perturbation: primordial ,BOLOMETERS ,synchrotron radiation ,Computer Science::Information Retrieval ,LIKELIHOOD ESTIMATOR ,statistical analysis: Bayesian ,Astronomy and Astrophysics ,SPIDER ,detector: sensitivity ,Space and Planetary Science ,density: perturbation ,Physical Sciences ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,black body ,astro-ph.CO ,power spectrum: angular dependence ,energy: density: primordial ,galaxy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,TRANSITION ,Astrophysics - Cosmology and Nongalactic Astrophysics ,cosmic background radiation: anisotropy - Abstract
We present the first linear polarization measurements from the 2015 long-duration balloon flight of SPIDER, an experiment designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. Results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency tests on these data. While the polarized CMB anisotropy from primordial density perturbations is the dominant signal in this region of sky, Galactic dust emission is also detected with high significance; Galactic synchrotron emission is found to be negligible in the SPIDER bands. We employ two independent foreground-removal techniques in order to explore the sensitivity of the cosmological result to the assumptions made by each. The primary method uses a dust template derived from Planck data to subtract the Galactic dust signal. A second approach, employing a joint analysis of SPIDER and Planck data in the harmonic domain, assumes a modified-blackbody model for the spectral energy distribution of the dust with no constraint on its spatial morphology. Using a likelihood that jointly samples the template amplitude and $r$ parameter space, we derive 95% upper limits on the primordial tensor-to-scalar ratio from Feldman-Cousins and Bayesian constructions, finding $r, 29 pages, 13 figures
- Published
- 2022