18 results on '"Vögele J"'
Search Results
2. Structure of an internal loop motif with three consecutive U•U mismatches from stem-loop 1 in the 3'-UTR of the SARS-CoV-2 genomic RNA.
- Author
-
Vögele J, Duchardt-Ferner E, Bains JK, Knezic B, Wacker A, Sich C, Weigand JE, Šponer J, Schwalbe H, Krepl M, and Wöhnert J
- Subjects
- Humans, Base Pairing, COVID-19 virology, Genome, Viral, Hydrogen Bonding, Molecular Dynamics Simulation, Nucleic Acid Conformation, Plasmodium falciparum genetics, 3' Untranslated Regions, Base Pair Mismatch, Nucleotide Motifs, RNA, Viral chemistry, RNA, Viral genetics, SARS-CoV-2 genetics, SARS-CoV-2 chemistry
- Abstract
The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs., (© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2024
- Full Text
- View/download PDF
3. High-resolution structure of stem-loop 4 from the 5'-UTR of SARS-CoV-2 solved by solution state NMR.
- Author
-
Vögele J, Hymon D, Martins J, Ferner J, Jonker HRA, Hargrove AE, Weigand JE, Wacker A, Schwalbe H, Wöhnert J, and Duchardt-Ferner E
- Subjects
- Humans, Base Sequence, Magnetic Resonance Spectroscopy, Nucleic Acid Conformation, RNA, Viral chemistry, COVID-19 virology, SARS-CoV-2 chemistry, SARS-CoV-2 genetics
- Abstract
We present the high-resolution structure of stem-loop 4 of the 5'-untranslated region (5_SL4) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) genome solved by solution state nuclear magnetic resonance spectroscopy. 5_SL4 adopts an extended rod-like structure with a single flexible looped-out nucleotide and two mixed tandem mismatches, each composed of a G•U wobble base pair and a pyrimidine•pyrimidine mismatch, which are incorporated into the stem-loop structure. Both the tandem mismatches and the looped-out residue destabilize the stem-loop structure locally. Their distribution along the 5_SL4 stem-loop suggests a role of these non-canonical elements in retaining functionally important structural plasticity in particular with regard to the accessibility of the start codon of an upstream open reading frame located in the RNA's apical loop. The apical loop-although mostly flexible-harbors residual structural features suggesting an additional role in molecular recognition processes. 5_SL4 is highly conserved among the different variants of SARS-CoV-2 and can be targeted by small molecule ligands, which it binds with intermediate affinity in the vicinity of the non-canonical elements within the stem-loop structure., (© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2023
- Full Text
- View/download PDF
4. 19 F NMR Untersuchung des Konformationsaustauschs mehrerer Zustände im synthetischen Neomycin-bindenden Riboschalter.
- Author
-
Overbeck JH, Vögele J, Nussbaumer F, Duchardt-Ferner E, Kreutz C, Wöhnert J, and Sprangers R
- Abstract
Competing Interests: CK ist Berater von Innotope und hält eine Beteiligung an Innotope, einem Unternehmen, das Produkte zur Markierung stabiler RNA‐Isotope anbietet. Die übrigen Autoren erklären, dass sie keine konkurrierenden Interessen haben.
- Published
- 2023
- Full Text
- View/download PDF
5. Multi-Site Conformational Exchange in the Synthetic Neomycin-Sensing Riboswitch Studied by 19 F NMR.
- Author
-
Overbeck JH, Vögele J, Nussbaumer F, Duchardt-Ferner E, Kreutz C, Wöhnert J, and Sprangers R
- Subjects
- Ligands, Anti-Bacterial Agents chemistry, Aminoglycosides, Neomycin chemistry, Neomycin metabolism, Riboswitch
- Abstract
The synthetic neomycin-sensing riboswitch interacts with its cognate ligand neomycin as well as with the related antibiotics ribostamycin and paromomycin. Binding of these aminoglycosides induces a very similar ground state structure in the RNA, however, only neomycin can efficiently repress translation initiation. The molecular origin of these differences has been traced back to differences in the dynamics of the ligand:riboswitch complexes. Here, we combine five complementary fluorine based NMR methods to accurately quantify seconds to microseconds dynamics in the three riboswitch complexes. Our data reveal complex exchange processes with up to four structurally different states. We interpret our findings in a model that shows an interplay between different chemical groups in the antibiotics and specific bases in the riboswitch. More generally, our data underscore the potential of
19 F NMR methods to characterize complex exchange processes with multiple excited states., (© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF
6. Structural and dynamic effects of pseudouridine modifications on noncanonical interactions in RNA.
- Author
-
Vögele J, Duchardt-Ferner E, Kruse H, Zhang Z, Sponer J, Krepl M, and Wöhnert J
- Subjects
- Nucleic Acid Conformation, Base Pairing, Uridine, RNA genetics, RNA chemistry, Pseudouridine genetics
- Abstract
Pseudouridine is the most frequently naturally occurring RNA modification, found in all classes of biologically functional RNAs. Compared to uridine, pseudouridine contains an additional hydrogen bond donor group and is therefore widely regarded as a structure stabilizing modification. However, the effects of pseudouridine modifications on the structure and dynamics of RNAs have so far only been investigated in a limited number of different structural contexts. Here, we introduced pseudouridine modifications into the U-turn motif and the adjacent U:U closing base pair of the neomycin-sensing riboswitch (NSR)-an extensively characterized model system for RNA structure, ligand binding, and dynamics. We show that the effects of replacing specific uridines with pseudouridines on RNA dynamics crucially depend on the exact location of the replacement site and can range from destabilizing to locally or even globally stabilizing. By using a combination of NMR spectroscopy, MD simulations and QM calculations, we rationalize the observed effects on a structural and dynamical level. Our results will help to better understand and predict the consequences of pseudouridine modifications on the structure and function of biologically important RNAs., (© 2023 Vögele et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.)
- Published
- 2023
- Full Text
- View/download PDF
7. 1 H, 13 C and 15 N chemical shift assignment of the stem-loops 5b + c from the 5'-UTR of SARS-CoV-2.
- Author
-
Mertinkus KR, Grün JT, Altincekic N, Bains JK, Ceylan B, Ferner JP, Frydman L, Fürtig B, Hengesbach M, Hohmann KF, Hymon D, Kim J, Knezic B, Novakovic M, Oxenfarth A, Peter SA, Qureshi NS, Richter C, Scherf T, Schlundt A, Schnieders R, Schwalbe H, Stirnal E, Sudakov A, Vögele J, Wacker A, Weigand JE, Wirmer-Bartoschek J, Martin MAW, and Wöhnert J
- Subjects
- 5' Untranslated Regions, Humans, Magnetic Resonance Spectroscopy, Nuclear Magnetic Resonance, Biomolecular, COVID-19, SARS-CoV-2
- Abstract
The ongoing pandemic of the respiratory disease COVID-19 is caused by the SARS-CoV-2 (SCoV2) virus. SCoV2 is a member of the Betacoronavirus genus. The 30 kb positive sense, single stranded RNA genome of SCoV2 features 5'- and 3'-genomic ends that are highly conserved among Betacoronaviruses. These genomic ends contain structured cis-acting RNA elements, which are involved in the regulation of viral replication and translation. Structural information about these potential antiviral drug targets supports the development of novel classes of therapeutics against COVID-19. The highly conserved branched stem-loop 5 (SL5) found within the 5'-untranslated region (5'-UTR) consists of a basal stem and three stem-loops, namely SL5a, SL5b and SL5c. Both, SL5a and SL5b feature a 5'-UUUCGU-3' hexaloop that is also found among Alphacoronaviruses. Here, we report the extensive
1 H,13 C and15 N resonance assignment of the 37 nucleotides (nts) long sequence spanning SL5b and SL5c (SL5b + c), as basis for further in-depth structural studies by solution NMR spectroscopy., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
8. NMR assignment of non-modified tRNA Ile from Escherichia coli.
- Author
-
de Jesus V, Biedenbänder T, Vögele J, Wöhnert J, and Fürtig B
- Subjects
- Amino Acids, Escherichia coli, Nuclear Magnetic Resonance, Biomolecular, Nucleic Acid Conformation, Nucleotides, RNA, Messenger, RNA, Transfer chemistry, RNA, Transfer genetics, Anticodon, RNA, Transfer, Ile
- Abstract
tRNAs are L-shaped RNA molecules of ~ 80 nucleotides that are responsible for decoding the mRNA and for the incorporation of the correct amino acid into the growing peptidyl-chain at the ribosome. They occur in all kingdoms of life and both their functions, and their structure are highly conserved. The L-shaped tertiary structure is based on a cloverleaf-like secondary structure that consists of four base paired stems connected by three to four loops. The anticodon base triplet, which is complementary to the sequence of the mRNA, resides in the anticodon loop whereas the amino acid is attached to the sequence CCA at the 3'-terminus of the molecule. tRNAs exhibit very stable secondary and tertiary structures and contain up to 10% modified nucleotides. However, their structure and function can also be maintained in the absence of nucleotide modifications. Here, we present the assignments of nucleobase resonances of the non-modified 77 nt tRNA
Ile from the gram-negative bacterium Escherichia coli. We obtained assignments for all imino resonances visible in the spectra of the tRNA as well as for additional exchangeable and non-exchangeable protons and for heteronuclei of the nucleobases. Based on these assignments we could determine the chemical shift differences between modified and non-modified tRNAIle as a first step towards the analysis of the effect of nucleotide modifications on tRNA's structure and dynamics., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
9. 1 H, 13 C, 15 N and 31 P chemical shift assignment for stem-loop 4 from the 5'-UTR of SARS-CoV-2.
- Author
-
Vögele J, Ferner JP, Altincekic N, Bains JK, Ceylan B, Fürtig B, Grün JT, Hengesbach M, Hohmann KF, Hymon D, Knezic B, Löhr F, Peter SA, Pyper D, Qureshi NS, Richter C, Schlundt A, Schwalbe H, Stirnal E, Sudakov A, Wacker A, Weigand JE, Wirmer-Bartoschek J, Wöhnert J, and Duchardt-Ferner E
- Subjects
- Nuclear Magnetic Resonance, Biomolecular, RNA, Viral, Nitrogen Isotopes, Nucleic Acid Conformation, Base Sequence, Carbon Isotopes, 5' Untranslated Regions, SARS-CoV-2
- Abstract
The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive
1 H,13 C,15 N and31 P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
10. 1 H, 13 C and 15 N assignment of stem-loop SL1 from the 5'-UTR of SARS-CoV-2.
- Author
-
Richter C, Hohmann KF, Toews S, Mathieu D, Altincekic N, Bains JK, Binas O, Ceylan B, Duchardt-Ferner E, Ferner J, Fürtig B, Grün JT, Hengesbach M, Hymon D, Jonker HRA, Knezic B, Korn SM, Landgraf T, Löhr F, Peter SA, Pyper DJ, Qureshi NS, Schlundt A, Schnieders R, Stirnal E, Sudakov A, Vögele J, Weigand JE, Wirmer-Bartoschek J, Witt K, Wöhnert J, Schwalbe H, and Wacker A
- Subjects
- Nuclear Magnetic Resonance, Biomolecular, Nucleic Acid Conformation, Carbon Isotopes, Base Sequence, SARS-CoV-2, 5' Untranslated Regions, Nitrogen Isotopes, RNA, Viral chemistry
- Abstract
The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7-33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the
1 H,13 C and15 N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
11. Exploring the Druggability of Conserved RNA Regulatory Elements in the SARS-CoV-2 Genome.
- Author
-
Sreeramulu S, Richter C, Berg H, Wirtz Martin MA, Ceylan B, Matzel T, Adam J, Altincekic N, Azzaoui K, Bains JK, Blommers MJJ, Ferner J, Fürtig B, Göbel M, Grün JT, Hengesbach M, Hohmann KF, Hymon D, Knezic B, Martins JN, Mertinkus KR, Niesteruk A, Peter SA, Pyper DJ, Qureshi NS, Scheffer U, Schlundt A, Schnieders R, Stirnal E, Sudakov A, Tröster A, Vögele J, Wacker A, Weigand JE, Wirmer-Bartoschek J, Wöhnert J, and Schwalbe H
- Subjects
- Drug Evaluation, Preclinical, Ligands, Molecular Structure, Nucleic Acid Conformation, Proton Magnetic Resonance Spectroscopy, RNA, Viral chemistry, Small Molecule Libraries chemistry, Genome, RNA, Viral metabolism, SARS-CoV-2 genetics, Small Molecule Libraries metabolism
- Abstract
SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different
1 H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2., (© 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)- Published
- 2021
- Full Text
- View/download PDF
12. Correction to 'Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy'.
- Author
-
Wacker A, Weigand JE, Akabayov SR, Altincekic N, Bains JK, Banijamali E, Binas O, Castillo-Martinez J, Cetiner E, Ceylan B, Chiu LY, Davila-Calderon J, Dhamotharan K, Duchardt-Ferner E, Ferner J, Frydman L, Fürtig B, Gallego J, Grün JT, Hacker C, Haddad C, Hähnke M, Hengesbach M, Hiller F, Hohmann KF, Hymon D, de Jesus V, Jonker H, Keller H, Knezic B, Landgraf T, Löhr F, Luo L, Mertinkus KR, Muhs C, Novakovic M, Oxenfarth A, Palomino-Schätzlein M, Petzold K, Peter SA, Pyper DJ, Qureshi NS, Riad M, Richter C, Saxena K, Schamber T, Scherf T, Schlagnitweit J, Schlundt A, Schnieders R, Schwalbe H, Simba-Lahuasi A, Sreeramulu S, Stirnal E, Sudakov A, Tants JN, Tolbert BS, Vögele J, Weiß L, Wirmer-Bartoschek J, Wirtz Martin MA, Wöhnert J, and Zetzsche H
- Published
- 2021
- Full Text
- View/download PDF
13. 1 H, 13 C and 15 N chemical shift assignment of the stem-loop 5a from the 5'-UTR of SARS-CoV-2.
- Author
-
Schnieders R, Peter SA, Banijamali E, Riad M, Altincekic N, Bains JK, Ceylan B, Fürtig B, Grün JT, Hengesbach M, Hohmann KF, Hymon D, Knezic B, Oxenfarth A, Petzold K, Qureshi NS, Richter C, Schlagnitweit J, Schlundt A, Schwalbe H, Stirnal E, Sudakov A, Vögele J, Wacker A, Weigand JE, Wirmer-Bartoschek J, and Wöhnert J
- Subjects
- Carbon Isotopes, Genes, Viral, Hydrogen, Nitrogen Isotopes, Protein Binding, Protein Domains, Protein Structure, Secondary, 5' Untranslated Regions, Coronavirus Papain-Like Proteases chemistry, Magnetic Resonance Spectroscopy, SARS-CoV-2 chemistry, SARS-CoV-2 genetics
- Abstract
The SARS-CoV-2 (SCoV-2) virus is the causative agent of the ongoing COVID-19 pandemic. It contains a positive sense single-stranded RNA genome and belongs to the genus of Betacoronaviruses. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are potential antiviral drug targets. Major parts of these sequences are highly conserved among Betacoronaviruses and contain cis-acting RNA elements that affect RNA translation and replication. The 31 nucleotide (nt) long highly conserved stem-loop 5a (SL5a) is located within the 5'-untranslated region (5'-UTR) important for viral replication. SL5a features a U-rich asymmetric bulge and is capped with a 5'-UUUCGU-3' hexaloop, which is also found in stem-loop 5b (SL5b). We herein report the extensive
1 H,13 C and15 N resonance assignment of SL5a as basis for in-depth structural studies by solution NMR spectroscopy.- Published
- 2021
- Full Text
- View/download PDF
14. Phosphorothioate Substitutions in RNA Structure Studied by Molecular Dynamics Simulations, QM/MM Calculations, and NMR Experiments.
- Author
-
Zhang Z, Vögele J, Mráziková K, Kruse H, Cang X, Wöhnert J, Krepl M, and Šponer J
- Subjects
- Hydrogen Bonding, Magnetic Resonance Spectroscopy, Phosphates, Molecular Dynamics Simulation, RNA
- Abstract
Phosphorothioates (PTs) are important chemical modifications of the RNA backbone where a single nonbridging oxygen of the phosphate is replaced with a sulfur atom. PT can stabilize RNAs by protecting them from hydrolysis and is commonly used as a tool to explore their function. It is, however, unclear what basic physical effects PT has on RNA stability and electronic structure. Here, we present molecular dynamics (MD) simulations, quantum mechanical (QM) calculations, and NMR spectroscopy measurements, exploring the effects of PT modifications in the structural context of the neomycin-sensing riboswitch (NSR). The NSR is the smallest biologically functional riboswitch with a well-defined structure stabilized by a U-turn motif. Three of the signature interactions of the U-turn: an H-bond, an anion-π interaction, and a potassium binding site; are formed by RNA phosphates, making the NSR an ideal model for studying how PT affects RNA structure and dynamics. By comparing with high-level QM calculations, we reveal the distinct physical properties of the individual interactions facilitated by the PT. The sulfur substitution, besides weakening the direct H-bond interaction, reduces the directionality of H-bonding while increasing its dispersion and induction components. It also reduces the induction and increases the dispersion component of the anion-π stacking. The sulfur force-field parameters commonly employed in the literature do not reflect these distinctions, leading to the unsatisfactory description of PT in simulations of the NSR. We show that it is not possible to accurately describe the PT interactions using one universal set of van der Waals sulfur parameters and provide suggestions for improving the force-field performance.
- Published
- 2021
- Full Text
- View/download PDF
15. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy.
- Author
-
Wacker A, Weigand JE, Akabayov SR, Altincekic N, Bains JK, Banijamali E, Binas O, Castillo-Martinez J, Cetiner E, Ceylan B, Chiu LY, Davila-Calderon J, Dhamotharan K, Duchardt-Ferner E, Ferner J, Frydman L, Fürtig B, Gallego J, Grün JT, Hacker C, Haddad C, Hähnke M, Hengesbach M, Hiller F, Hohmann KF, Hymon D, de Jesus V, Jonker H, Keller H, Knezic B, Landgraf T, Löhr F, Luo L, Mertinkus KR, Muhs C, Novakovic M, Oxenfarth A, Palomino-Schätzlein M, Petzold K, Peter SA, Pyper DJ, Qureshi NS, Riad M, Richter C, Saxena K, Schamber T, Scherf T, Schlagnitweit J, Schlundt A, Schnieders R, Schwalbe H, Simba-Lahuasi A, Sreeramulu S, Stirnal E, Sudakov A, Tants JN, Tolbert BS, Vögele J, Weiß L, Wirmer-Bartoschek J, Wirtz Martin MA, Wöhnert J, and Zetzsche H
- Subjects
- 3' Untranslated Regions genetics, Base Sequence, COVID-19 epidemiology, COVID-19 virology, Frameshifting, Ribosomal genetics, Genome, Viral genetics, Humans, Models, Molecular, Pandemics, SARS-CoV-2 physiology, COVID-19 prevention & control, Magnetic Resonance Spectroscopy methods, Nucleic Acid Conformation, RNA, Viral chemistry, SARS-CoV-2 genetics
- Abstract
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention., (© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2020
- Full Text
- View/download PDF
16. An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch.
- Author
-
Krepl M, Vögele J, Kruse H, Duchardt-Ferner E, Wöhnert J, and Sponer J
- Subjects
- Base Pairing, Binding Sites, Cations chemistry, Hydrogen Bonding, Ions chemistry, Ligands, Magnesium, Molecular Dynamics Simulation, Mutation, Neomycin, Nuclear Magnetic Resonance, Biomolecular, Nucleic Acid Conformation, Potassium, Cytosine chemistry, Riboswitch, Uracil chemistry
- Abstract
The neomycin sensing riboswitch is the smallest biologically functional RNA riboswitch, forming a hairpin capped with a U-turn loop-a well-known RNA motif containing a conserved uracil. It was shown previously that a U→C substitution of the eponymous conserved uracil does not alter the riboswitch structure due to C protonation at N3. Furthermore, cytosine is evolutionary permitted to replace uracil in other U-turns. Here, we use molecular dynamics simulations to study the molecular basis of this substitution in the neomycin sensing riboswitch and show that a structure-stabilizing monovalent cation-binding site in the wild-type RNA is the main reason for its negligible structural effect. We then use NMR spectroscopy to confirm the existence of this cation-binding site and to demonstrate its effects on RNA stability. Lastly, using quantum chemical calculations, we show that the cation-binding site is altering the electronic environment of the wild-type U-turn so that it is more similar to the cytosine mutant. The study reveals an amazingly complex and delicate interplay between various energy contributions shaping up the 3D structure and evolution of nucleic acids.
- Published
- 2018
- Full Text
- View/download PDF
17. [Principles of loco-regional anesthesia].
- Author
-
Vögele J
- Subjects
- Adult, Aged, Aged, 80 and over, Anesthesia, Spinal nursing, Female, Humans, Male, Middle Aged, Nursing Theory, Preoperative Care nursing, Anesthesia, Conduction nursing, Anesthesia, Local nursing, Nurse Anesthetists education
- Published
- 2016
18. [Anesthesia nursing in regional anesthesia].
- Author
-
Vögele J
- Subjects
- Anesthesia, Spinal nursing, Cooperative Behavior, Female, Humans, Interdisciplinary Communication, Male, Nursing Theory, Patient Care Team, Patient Positioning, Anesthesia, Conduction nursing, Nurse Anesthetists, Nurse's Role
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.