7 results on '"Readioff R"'
Search Results
2. The effect of simplifying scaling methods of an upper limb musculoskeletal model on the joint angles
- Author
-
Readioff, R., primary, Blana, D., additional, Mulla, D., additional, Philp, F., additional, Postans, N., additional, and Chadwick, E., additional
- Published
- 2020
- Full Text
- View/download PDF
3. Proteoglycans play a role in the viscoelastic behaviour of the canine cranial cruciate ligament.
- Author
-
Readioff R, Geraghty B, Kharaz YA, Elsheikh A, and Comerford E
- Abstract
Proteoglycans (PGs) are minor extracellular matrix proteins, and their contributions to the mechanobiology of complex ligaments such as the cranial cruciate ligament (CCL) have not been determined to date. The CCLs are highly susceptible to injuries, and their extracellular matrix comprises higher PGs content than the other major knee ligaments. Hence these characteristics make CCLs an ideal specimen to use as a model in this study. This study addressed the hypothesis that PGs play a vital role in CCL mechanobiology by determining the biomechanical behaviour at low strain rates before and after altering PGs content. For the first time, this study qualitatively investigated the contribution of PGs to key viscoelastic characteristics, including strain rate dependency, hysteresis, creep and stress relaxation, in canine CCLs. Femur-CCL-tibia specimens ( n = 6 pairs) were harvested from canine knee joints and categorised into a control group, where PGs were not depleted, and a treated group, where PGs were depleted. Specimens were preconditioned and cyclically loaded to 9.9 N at 0.1, 1 and 10%/min strain rates, followed by creep and stress relaxation tests. Low tensile loads were applied to focus on the toe-region of the stress-strain curves where the non-collagenous extracellular matrix components take significant effect. Biochemical assays were performed on the CCLs to determine PGs and water content. The PG content was ∼19% less in the treated group than in the control group. The qualitative study showed that the stress-strain curves in the treated group were strain rate dependent, similar to the control group. The CCLs in the treated group showed stiffer characteristics than the control group. Hysteresis, creep characteristics (creep strain, creep rate and creep compliance), and stress relaxation values were reduced in the treated group compared to the control group. This study suggests that altering PGs content changes the microstructural organisation of the CCLs, including water molecule contents which can lead to changes in CCL viscoelasticity. The change in mechanical properties of the CCLs may predispose to injury and lead to knee joint osteoarthritis. Future studies should focus on quantitatively identifying the effect of PG on the mechanics of intact knee ligaments across broader demography., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Readioff, Geraghty, Kharaz, Elsheikh and Comerford.)
- Published
- 2022
- Full Text
- View/download PDF
4. Use and evaluation of assistive technologies for upper limb function in tetraplegia.
- Author
-
Readioff R, Siddiqui ZK, Stewart C, Fulbrook L, O'Connor RJ, and Chadwick EK
- Subjects
- Humans, Upper Extremity, Quadriplegia, Physical Therapy Modalities, Spinal Cord Injuries complications, Self-Help Devices
- Abstract
Context: More than half of all spinal cord injuries (SCI) occur at the cervical level leading to loss of upper limb function, restricted activity and reduced independence. Several technologies have been developed to assist with upper limb functions in the SCI population., Objective: There is no clear clinical consensus on the effectiveness of the current assistive technologies for the cervical SCI population, hence this study reviews the literature in the years between 1999 and 2019., Methods: A systematic review was performed on the state-of-the-art assistive technology that supports and improves the function of impaired upper limbs in cervical SCI populations. Combinations of terms, covering assistive technology, SCI, and upper limb, were used in the search, which resulted in a total of 1770 articles. Data extractions were performed on the selected studies which involved summarizing details on the assistive technologies, characteristics of study participants, outcome measures, and improved upper limb functions when using the device., Results: A total of 24 articles were found and grouped into five categories, including neuroprostheses (invasive and non-invasive), orthotic devices, hybrid systems, robots, and arm supports. Only a few selected studies comprehensively reported characteristics of the participants. There was a wide range of outcome measures and all studies reported improvements in upper limb function with the devices., Conclusions: This study highlighted that assistive technologies can improve functions of the upper limbs in SCI patients. It was challenging to draw generalizable conclusions because of factors, such as heterogeneity of recruited participants, a wide range of outcome measures, and the different technologies employed.
- Published
- 2022
- Full Text
- View/download PDF
5. Ligament mechanics of ageing and osteoarthritic human knees.
- Author
-
Peters AE, Geraghty B, Bates KT, Akhtar R, Readioff R, and Comerford E
- Abstract
Knee joint ligaments provide stability to the joint by preventing excessive movement. There has been no systematic effort to study the effect of OA and ageing on the mechanical properties of the four major human knee ligaments. This study aims to collate data on the material properties of the anterior (ACL) and posterior (PCL) cruciate ligaments, medial (MCL) and lateral (LCL) collateral ligaments. Bone-ligament-bone specimens from twelve cadaveric human knee joints were extracted for this study. The cadaveric knee joints were previously collected to study ageing and OA on bone and cartilage material properties; therefore, combining our previous bone and cartilage data with the new ligament data from this study will facilitate subject-specific whole-joint modelling studies. The bone-ligament-bone specimens were tested under tensile loading to failure, determining material parameters including yield and ultimate (failure) stress and strain, secant modulus, tangent modulus, and stiffness. There were significant negative correlations between age and ACL yield stress ( p = 0.03 ), ACL failure stress ( p = 0.02 ), PCL secant ( p = 0.02 ) and tangent ( p = 0.02 ) modulus, and LCL stiffness ( p = 0.046 ). Significant negative correlations were also found between OA grades and ACL yield stress ( p = 0.02 ) and strain ( p = 0.03 ), and LCL failure stress ( p = 0.048 ). However, changes in age or OA grade did not show a statistically significant correlation with the MCL tensile parameters. Due to the small sample size, the combined effect of age and the presence of OA could not be statistically derived. This research is the first to report tensile properties of the four major human knee ligaments from a diverse demographic. When combined with our previous findings on bone and cartilage for the same twelve knee cadavers, the current ligament study supports the conceptualisation of OA as a whole-joint disease that impairs the integrity of many peri-articular tissues within the knee. The subject-specific data pool consisting of the material properties of the four major knee ligaments, subchondral and trabecular bones and articular cartilage will advance knee joint finite element models., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Peters, Geraghty, Bates, Akhtar, Readioff and Comerford.)
- Published
- 2022
- Full Text
- View/download PDF
6. Viscoelastic characteristics of the canine cranial cruciate ligament complex at slow strain rates.
- Author
-
Readioff R, Geraghty B, Elsheikh A, and Comerford E
- Abstract
Ligaments including the cruciate ligaments support and transfer loads between bones applied to the knee joint organ. The functions of these ligaments can get compromised due to changes to their viscoelastic material properties. Currently there are discrepancies in the literature on the viscoelastic characteristics of knee ligaments which are thought to be due to tissue variability and different testing protocols. The aim of this study was to characterise the viscoelastic properties of healthy cranial cruciate ligaments (CCLs), from the canine knee (stifle) joint, with a focus on the toe region of the stress-strain properties where any alterations in the extracellular matrix which would affect viscoelastic properties would be seen. Six paired CCLs, from skeletally mature and disease-free Staffordshire bull terrier stifle joints were retrieved as a femur-CCL-tibia complex and mechanically tested under uniaxial cyclic loading up to 10 N at three strain rates, namely 0.1%, 1% and 10%/min, to assess the viscoelastic property of strain rate dependency. The effect of strain history was also investigated by subjecting contralateral CCLs to an ascending (0.1%, 1% and 10%/min) or descending (10%, 1% and 0.1%/min) strain rate protocol. The differences between strain rates were not statistically significant. However, hysteresis and recovery of ligament lengths showed some dependency on strain rate. Only hysteresis was affected by the test protocol and lower strain rates resulted in higher hysteresis and lower recovery. These findings could be explained by the slow process of uncrimping of collagen fibres and the contribution of proteoglycans in the ligament extracellular matrix to intra-fibrillar gliding, which results in more tissue elongations and higher energy dissipation. This study further expands our understanding of canine CCL behaviour, providing data for material models of femur-CCL-tibia complexes, and demonstrating the challenges for engineering complex biomaterials such as knee joint ligaments., Competing Interests: The authors declare that they have no competing interests., (© 2020 Readioff et al.)
- Published
- 2020
- Full Text
- View/download PDF
7. A full-field 3D digital image correlation and modelling technique to characterise anterior cruciate ligament mechanics ex vivo.
- Author
-
Readioff R, Geraghty B, Comerford E, and Elsheikh A
- Subjects
- Animals, Biomechanical Phenomena, Dogs, Finite Element Analysis, Knee Joint, Tibia, Anterior Cruciate Ligament diagnostic imaging, Anterior Cruciate Ligament Injuries
- Abstract
It is limiting to use conventional methods when characterising material properties of complex biological tissues with inhomogeneous and anisotropic structure, such as the anterior cruciate ligament (ACL) in the knee joint. This study aims to develop and utilise a three-dimensional digital image correlation method (3D DIC) for the purpose of determining material properties of femur-ACL-tibia complex across the surface without any contact between the tissue and the loading equipment. A full-field (360° view) 3D DIC test setup consisting of six digital single-lens reflex cameras was developed and ACL specimens from skeletally mature dog knee joints were tested. The six cameras were arranged into three pairs and the cameras within each pair were positioned with 25° in between to obtain the desired stereovision output. The test setup was calibrated twice: first to obtain the intrinsic and extrinsic parameters within camera pairs, and second to align the 3D surfaces from each camera pair in order to generate the full view of the ACLs. Using the undeformed 3D surfaces of the ligaments, ACL-specific finite element models were generated. Longitudinal deformation of ligaments under tensile loads obtained from the 3D DIC, and this was analysed to serve as input for the inverse finite element analysis. As a result, hyperelastic coefficients from the first-order Ogden model that characterise ACL behaviour were determined with a marginal error of <1.5%. This test setup and methodology provides a means to accurately determine inhomogeneous and anisotropic material properties of ACL. The methodology described in this study could be adopted to investigate other biological and cultured tissues with complex structure. STATEMENT OF SIGNIFICANCE: Determining the material properties of soft tissues with complex anatomical structure, such as the anterior cruciate ligament (ACL), is important to better understand their contribution to musculoskeletal biomechanics. Current conventional methods for characterising material properties of the ACL are often limited to a contact measurement approach, however an improved understanding of the mechanics of this complex tissue is vital in terms of preventing injury and developing novel therapies. This article reports the development and utilisation of non-contact optical methodology involving full-field three-dimensional digital image correlation and finite element analysis to accurately investigate material properties of the ACL, in a controlled environment. This technique reduces inaccuracies due to specimen clamping and more importantly considers the inhomogeneous nature of the examined tissue., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.