The application of 3D printing technology in the delivery of macromolecules, such as proteins and enzymes, is limited by the lack of suitable inks. In this study, we report the development of novel inks for 3D printing of constructs containing proteins while maintaining the activity of the proteins during and after printing. Different ink formulations containing Pluronic F-127 (20-35 %, w/v), trehalose (2-10 %, w/v) or mannitol, poly (ethylene glycol) diacrylate (PEGDA) (0 or 10 %, w/w), and diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO, 0 or 0.2 mg/mL) were prepared for 3D-microextrusion printing. The F2 formulation that contained β-galactosidase (β-gal) as a model enzyme, Pluronic F-127 (30 %), and trehalose (10 %) demonstrated the desired viscosity, printability, and dose flexibility. The shear-thinning property of the F2 formulation enabled the printing of β-gal containing constructs with a good peak force during extrusion. After 3D printing, the enzymatic activity of the β-gal in the constructs was maintained for an extended period, depending on the construct design and storage conditions. For instance, there was a 50 % reduction in β-gal activity in the two-layer constructs, but only a 20 % reduction in the four-layer construct (i.e., 54.5 ± 1.2 % and 82.7 ± 9.9 %, respectively), after 4 days of storage. The β-gal activity in constructs printed from the F2 formulation was maintained for up to 20 days when stored in sealed bags at room temperatures (21 ± 2 °C), but not when stored unsealed in the same conditions (e.g., ∼60 % activity loss within 7 days). The β-gal from constructs printed from F2 started to release within 5 min and reached 100 % after 20 min. With the design flexibility offered by the 3D printing, the β-gal release from the constructs was delayed to 3 h by printing a backing layer of β-gal-free F5 ink on the constructs printed from the F2 ink. Finally, ovalbumin as an alternative protein was also incorporated in similar ink compositions. Ovalbumin exhibited a release profile like that of the β-gal, and the release can also be modified with different shape design and/or ink composition. In conclusion, ink formulations that possess desirable properties for 3D printing of protein-containing constructs while maintaining the protein activity during and after printing were developed., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: [Author M.M. is co-inventor of related intellectual property (IP) on 3D printing of biologics. M.M., an author of this manuscript, holds stock in, serves on a scientific advisory board for, or is a consultant for, CoM3D Ltd. (Surrey, UK), DosePlus Therapeutics (Princeton, NJ, USA), and Septum Solutions LLC (Houston, TX, USA). The terms of this arrangement have been reviewed and approved by the University of Texas at Austin and the University of Mississippi in accordance with their policies on objectivity in research. The company had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results. ZC reports a relationship with CoM3D Ltd. ZC serves as the Editor of the International Journal of Pharmaceutics for North America. This paper was subject to all the Journal’s usual procedures. The peer review was handled, and the editorial decision was made independently of ZC and his research group.]., (Copyright © 2024 Elsevier B.V. All rights reserved.)