5 results on '"O'Callahan M"'
Search Results
2. Cognitive stimulation has potential for brain activation in individuals with Rett syndrome.
- Author
-
Migliorelli, C., Medina‐Rivera, I., Bachiller, A., Tost, A., Alonso, J. F., López‐Sala, A., Armstrong, J., O'Callahan, M. d. M., Pineda, M., Mañanas, M. A., Romero, S., and García‐Cazorla, Á.
- Subjects
BRAIN physiology ,ELECTROENCEPHALOGRAPHY ,EYE movements ,COGNITIVE rehabilitation ,TREATMENT effectiveness ,COGNITIVE testing ,RETT syndrome - Abstract
Background: Knowledge regarding neuropsychological training in Rett syndrome (RS) is scarce. The aim of this study was to assess the outcome and the duration of the effect of cognitive stimulation on topographic electroencephalography (EEG) data in RS. Methods: Twenty female children diagnosed with RS were included in the analysis. Girls with RS conducted a cognitive task using an eye‐tracker designed to evaluate access and choice skills. EEG data were acquired during the experimental procedure including two 10‐min baseline stages before and after the task. Topographical changes of several EEG spectral markers including absolute and relative powers, Brain Symmetry Index and entropy were assessed. Results: Topographic significance probability maps suggested statistical decreases on delta activity and increases on beta rhythm associated with the cognitive task. Entropy increased during and after the task, likely related to more complex brain activity. A significant positive interaction was obtained between Brain Symmetry Index and age showing that the improvement of interhemispheric symmetry was higher in younger girls (5–10 years). Conclusions: According to our findings, significant alterations of brain rhythms were observed during and after cognitive stimulation, suggesting that cognitive stimulation may have effects on brain activity beyond the stimulation period. Finally, our promising results also showed an increase brain symmetry that was especially relevant for the younger group. This could suggest an interaction of the eye‐tracking cognitive task; however, further studies in this field are needed to assess the relation between brain asymmetries and age. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Safety, tolerability, and immunogenicity of the Ebola Sudan chimpanzee adenovirus vector vaccine (cAd3-EBO S) in healthy Ugandan adults: a phase 1, open-label, dose-escalation clinical trial.
- Author
-
Mwesigwa B, Houser KV, Hofstetter AR, Ortega-Villa AM, Naluyima P, Kiweewa F, Nakabuye I, Yamshchikov GV, Andrews C, O'Callahan M, Strom L, Schech S, Anne Eller L, Sondergaard EL, Scott PT, Amare MF, Modjarrad K, Wamala A, Tindikahwa A, Musingye E, Nanyondo J, Gaudinski MR, Gordon IJ, Holman LA, Saunders JG, Costner PJM, Mendoza FH, Happe M, Morgan P, Plummer SH, Hickman SP, Vazquez S, Murray T, Cordon J, Dulan CNM, Hunegnaw R, Basappa M, Padilla M, Gajjala SR, Swanson PA 2nd, Lin BC, Coates EE, Gall JG, McDermott AB, Koup RA, Mascola JR, Ploquin A, Sullivan NJ, Kibuuka H, Ake JA, and Ledgerwood JE
- Subjects
- Animals, Humans, Adult, Pan troglodytes, Uganda, Sudan, Antibodies, Viral, Adenoviridae genetics, Glycoproteins, Immunogenicity, Vaccine, Double-Blind Method, Hemorrhagic Fever, Ebola prevention & control, Ebola Vaccines, Ebolavirus genetics, Adenoviruses, Simian genetics
- Abstract
Background: Sudan Ebola virus can cause severe viral disease, with an average case fatality rate of 54%. A recent outbreak of Sudan Ebola virus in Uganda caused 55 deaths among 164 confirmed cases in the second half of 2022. Although vaccines and therapeutics specific for Zaire Ebola virus have been approved for use during outbreak situations, Sudan Ebola virus is an antigenically distinct virus with no approved vaccines available., Methods: In this phase 1, open-label, dose-escalation trial we evaluated the safety, tolerability, and immunogenicity of a monovalent chimpanzee adenovirus 3 vaccine against Sudan Ebola virus (cAd3-EBO S) at Makerere University Walter Reed Project in Kampala, Uganda. Study participants were recruited from the Kampala metropolitan area using International Review Board-approved written and electronic media explaining the trial intervention. Healthy adults without previous receipt of Ebola, Marburg, or cAd3 vectored-vaccines were enrolled to receive cAd3-EBO S at either 1 × 10
10 or 1 × 1011 particle units (PU) in a single intramuscular vaccination and were followed up for 48 weeks. Primary safety and tolerability endpoints were assessed in all vaccine recipients by reactogenicity for the first 7 days, adverse events for the first 28 days, and serious adverse events throughout the study. Secondary immunogenicity endpoints included evaluation of binding antibody and T-cell responses against the Sudan Ebola virus glycoprotein, and neutralising antibody responses against the cAd3 vector at 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT04041570, and is completed., Findings: 40 healthy adults were enrolled between July 22 and Oct 1, 2019, with 20 receiving 1 × 1010 PU and 20 receiving 1 × 1011 PU of cAd3-EBO S. 38 (95%) participants completed all follow-up visits. The cAd3-EBO S vaccine was well tolerated with no severe adverse events. The most common reactogenicity symptoms were pain or tenderness at the injection site (34 [85%] of 40), fatigue (29 [73%] of 40), and headache (26 [65%] of 40), and were mild to moderate in severity. Positive responses for glycoprotein-specific binding antibodies were induced by 2 weeks in 31 (78%) participants, increased to 34 (85%) participants by 4 weeks, and persisted to 48 weeks in 31 (82%) participants. Most participants developed glycoprotein-specific T-cell responses (20 [59%, 95% CI 41-75] of 34; six participants were removed from the T cell analysis after failing quality control parameters) by 4 weeks after vaccination, and neutralising titres against the cAd3 vector were also increased from baseline (90% inhibitory concentration of 47, 95% CI 30-73) to 4 weeks after vaccination (196, 125-308)., Interpretation: The cAd3-EBO S vaccine was safe at both doses, rapidly inducing immune responses in most participants after a single injection. The rapid onset and durability of the vaccine-induced antibodies make this vaccine a strong candidate for emergency deployment in Sudan Ebola virus outbreaks., Funding: National Institutes of Health via interagency agreement with Walter Reed Army Institute of Research., Competing Interests: Declaration of interests NJS is listed on patents involving cAd3-vectored vaccines. All other authors declare no competing interests., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
4. Low-dose intravenous and subcutaneous CIS43LS monoclonal antibody for protection against malaria (VRC 612 Part C): a phase 1, adaptive trial.
- Author
-
Lyke KE, Berry AA, Mason K, Idris AH, O'Callahan M, Happe M, Strom L, Berkowitz NM, Guech M, Hu Z, Castro M, Basappa M, Wang L, Low K, Holman LA, Mendoza F, Gordon IJ, Plummer SH, Trofymenko O, Strauss KS, Joshi S, Shrestha B, Adams M, Chagas AC, Murphy JR, Stein J, Hickman S, McDougal A, Lin B, Narpala SR, Vazquez S, Serebryannyy L, McDermott A, Gaudinski MR, Capparelli EV, Coates EE, Wu RL, Ledgerwood JE, Dropulic LK, and Seder RA
- Subjects
- Adult, Animals, Humans, Antibodies, Monoclonal therapeutic use, Plasmodium falciparum, Malaria, Falciparum drug therapy, Malaria, Falciparum prevention & control, Antimalarials, Malaria Vaccines therapeutic use
- Abstract
Background: Human monoclonal antibodies might offer an important new approach to reduce malaria morbidity and mortality. In the first two parts of a three-part clinical trial, the antimalarial monoclonal antibody CIS43LS conferred high protection against parasitaemia at doses of 20 mg/kg or 40 mg/kg administered intravenously followed by controlled human malaria infection. The ability of CIS43LS to confer protection at lower doses or by the subcutaneous route is unknown. We aimed to provide data on the safety and optimisation of dose and route for the human antimalaria monoclonal antibody CIS43LS., Methods: VRC 612 Part C was the third part of a three-part, first-in-human, phase 1, adaptive trial, conducted at the University of Maryland, Baltimore Center for Vaccine Development and Global Health, Baltimore, MD, USA. We enrolled adults aged 18-50 years with no previous malaria vaccinations or infections, in a sequential, dose-escalating manner. Eligible participants received the monoclonal antibody CIS43LS in a single, open-label dose of 1 mg/kg, 5 mg/kg, or 10 mg/kg intravenously, or 5 mg/kg or 10 mg/kg subcutaneously. Participants underwent controlled human malaria infection by the bites of five mosquitoes infected with Plasmodium falciparum 3D7 strain approximately 8 weeks after their monoclonal antibody inoculation. Six additional control participants who did not receive CIS43LS underwent controlled human malaria infection simultaneously. Participants were followed-up daily on days 7-18 and day 21, with qualitative PCR used for P falciparum detection. Participants who tested positive for P falciparum were treated with atovaquone-proguanil and those who remained negative were treated at day 21. Participants were followed-up until 24 weeks after dosing. The primary outcome was safety and tolerability of CIS43LS at each dose level, assessed in the as-treated population. Secondary outcomes included protective efficacy of CIS43LS after controlled human malaria infection. This trial is now complete and is registered with ClinicalTrials.gov, NCT04206332., Findings: Between Sept 1, 2021, and Oct 29, 2021, 47 people were assessed for eligibility and 31 were enrolled (one subsequently withdrew and was replaced) and assigned to receive doses of 1 mg/kg (n=7), 5 mg/kg (n=4), and 10 mg/kg (n=3) intravenously and 5 mg/kg (n=4) and 10 mg/kg (n=4) subcutaneously, or to the control group (n=8). CIS43LS administration was safe and well tolerated; no serious adverse events occurred. CIS43LS protected 18 (82%) of 22 participants who received a dose. No participants developed parasitaemia following dosing at 5 mg/kg intravenously or subcutaneously, or at 10 mg/kg intravenously or subcutaneously. All six control participants and four of seven participants dosed at 1 mg/kg intravenously developed parasitaemia after controlled human malaria infection., Interpretation: CIS43LS was safe and well tolerated, and conferred protection against P falciparum at low doses and by the subcutaneous route, providing evidence that this approach might be useful to prevent malaria across several clinical use cases., Funding: National Institute of Allergy and Infectious Diseases, National Institutes of Health., Competing Interests: Declaration of interests AHI and RAS are listed as inventors on a pending patent application describing CIS43 and related antibodies. All other authors declare no competing interests., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
5. Effect of a Chikungunya Virus-Like Particle Vaccine on Safety and Tolerability Outcomes: A Randomized Clinical Trial.
- Author
-
Chen GL, Coates EE, Plummer SH, Carter CA, Berkowitz N, Conan-Cibotti M, Cox JH, Beck A, O'Callahan M, Andrews C, Gordon IJ, Larkin B, Lampley R, Kaltovich F, Gall J, Carlton K, Mendy J, Haney D, May J, Bray A, Bailer RT, Dowd KA, Brockett B, Gordon D, Koup RA, Schwartz R, Mascola JR, Graham BS, Pierson TC, Donastorg Y, Rosario N, Pape JW, Hoen B, Cabié A, Diaz C, and Ledgerwood JE
- Subjects
- Adolescent, Adult, Antibodies, Neutralizing blood, Chikungunya Fever immunology, Double-Blind Method, Female, Humans, Injections, Intramuscular, Male, Middle Aged, Neutralization Tests, Vaccines, Virus-Like Particle administration & dosage, Vaccines, Virus-Like Particle immunology, Viral Vaccines administration & dosage, Viral Vaccines immunology, Young Adult, Chikungunya Fever prevention & control, Chikungunya virus immunology, Vaccines, Virus-Like Particle adverse effects, Viral Vaccines adverse effects
- Abstract
Importance: Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus prevalent worldwide. There are currently no licensed vaccines or therapies., Objective: To evaluate the safety and tolerability of an investigational CHIKV virus-like particle (VLP) vaccine in endemic regions., Design, Setting, and Participants: This was a randomized, placebo-controlled, double-blind, phase 2 clinical trial to assess the vaccine VRC-CHKVLP059-00-VP (CHIKV VLP). The trial was conducted at 6 outpatient clinical research sites located in Haiti, Dominican Republic, Martinique, Guadeloupe, and Puerto Rico. A total of 400 healthy adults aged 18 through 60 years were enrolled after meeting eligibility criteria. The first study enrollment occurred on November 18, 2015; the final study visit, March 6, 2018., Interventions: Participants were randomized 1:1 to receive 2 intramuscular injections 28 days apart (20 µg, n = 201) or placebo (n = 199) and were followed up for 72 weeks., Main Outcomes and Measures: The primary outcome was the safety (laboratory parameters, adverse events, and CHIKV infection) and tolerability (local and systemic reactogenicity) of the vaccine, and the secondary outcome was immune response by neutralization assay 4 weeks after second vaccination., Results: Of the 400 randomized participants (mean age, 35 years; 199 [50%] women), 393 (98%) completed the primary safety analysis. All injections were well tolerated. Of the 16 serious adverse events unrelated to the study drugs, 4 (25%) occurred among 4 patients in the vaccine group and 12 (75%) occurred among 11 patients in the placebo group. Of the 16 mild to moderate unsolicited adverse events that were potentially related to the drug, 12 (75%) occurred among 8 patients in the vaccine group and 4 (25%) occurred among 3 patients in the placebo group. All potentially related adverse events resolved without clinical sequelae. At baseline, there was no significant difference between the effective concentration (EC50)-which is the dilution of sera that inhibits 50% infection in viral neutralization assay-geometric mean titers (GMTs) of neutralizing antibodies of the vaccine group (46; 95% CI, 34-63) and the placebo group (43; 95% CI, 32-57). Eight weeks following the first administration, the EC50 GMT in the vaccine group was 2005 (95% CI, 1680-2392) vs 43 (95% CI, 32-58; P < .001) in the placebo group. Durability of the immune response was demonstrated through 72 weeks after vaccination., Conclusions and Relevance: Among healthy adults in a chikungunya endemic population, a virus-like particle vaccine compared with placebo demonstrated safety and tolerability. Phase 3 trials are needed to assess clinical efficacy., Trial Registration: ClinicalTrials.gov Identifier: NCT02562482.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.