78 results on '"Mouritsen H"'
Search Results
2. Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe)
- Author
-
Elbers, D., Bulte, M., Bairlein, F., Mouritsen, H., and Heyers, D.
- Published
- 2017
- Full Text
- View/download PDF
3. The magnetic map sense and its use in fine-tuning the migration programme of birds
- Author
-
Heyers, D., Elbers, D., Bulte, M., Bairlein, F., and Mouritsen, H.
- Published
- 2017
- Full Text
- View/download PDF
4. Double cones and the diverse connectivity of photoreceptors and bipolar cells in an avian retina
- Author
-
Günther, A., Dedek, K., Haverkamp, S., Irsen, S., Briggman, K., and Mouritsen, H.
- Subjects
genetic structures ,sense organs - Abstract
Double cones are the most common photoreceptor cell type in most avian retinas, but their precise functions remain a mystery. Among their suggested functions are luminance detection, polarized light detection, and light-dependent, radical-pair-based magnetoreception. To better understand the function of double cones, it will be crucial to know how they are connected to the neural network in the avian retina. Here we use serial sectioning, multi-beam scanning electron microscopy (ssmSEM) to investigate double cone anatomy and connectivity with a particular focus on their contacts to other photoreceptor and bipolar cells in the chicken retina. We found that double cones are highly connected with neighbouring double cones and with other photoreceptor cells through telodendria-to-terminal and telodendria-to-telodendria contacts. We also identified 15 bipolar cell types based on their axonal stratifications, photoreceptor contact pattern, soma position, and dendritic and axonal field mosaics. Thirteen of these 15 bipolar cell types contacted at least one or both members of the double cone. All bipolar cells were bi- or multistratified. We also identified surprising contacts between other cone types and between rods and cones. Our data indicate a much more complex connectivity network in the outer plexiform layer of the avian retina than originally expected.
- Published
- 2021
5. Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)
- Author
-
Feng, S, Stiller, J, Deng, Y, Armstrong, J, Fang, Q, Reeve, AH, Xie, D, Chen, G, Guo, C, Faircloth, BC, Petersen, B, Wang, Z, Zhou, Q, Diekhans, M, Chen, W, Andreu-Sanchez, S, Margaryan, A, Howard, JT, Parent, C, Pacheco, G, Sinding, M-HS, Puetz, L, Cavill, E, Ribeiro, AM, Eckhart, L, Fjeldsa, J, Hosner, PA, Brumfield, RT, Christidis, L, Bertelsen, MF, Sicheritz-Ponten, T, Tietze, DT, Robertson, BC, Song, G, Borgia, G, Claramunt, S, Lovette, IJ, Cowen, SJ, Njoroge, P, Dumbacher, JP, Ryder, OA, Fuchs, J, Bunce, M, Burt, DW, Cracraft, J, Meng, G, Hackett, SJ, Ryan, PG, Jonsson, KA, Jamieson, IG, da Fonseca, RR, Braun, EL, Houde, P, Mirarab, S, Suh, A, Hansson, B, Ponnikas, S, Sigeman, H, Stervander, M, Frandsen, PB, van der Zwan, H, van der Sluis, R, Visser, C, Balakrishnan, CN, Clark, AG, Fitzpatrick, JW, Bowman, R, Chen, N, Cloutier, A, Sackton, TB, Edwards, SV, Foote, DJ, Shakya, SB, Sheldon, FH, Vignal, A, Soares, AER, Shapiro, B, Gonzalez-Solis, J, Ferrer-Obiol, J, Rozas, J, Riutort, M, Tigano, A, Friesen, V, Dalen, L, Urrutia, AO, Szekely, T, Liu, Y, Campana, MG, Corvelo, A, Fleischer, RC, Rutherford, KM, Gemmell, NJ, Dussex, N, Mouritsen, H, Thiele, N, Delmore, K, Liedvogel, M, Franke, A, Hoeppner, MP, Krone, O, Fudickar, AM, Mila, B, Ketterson, ED, Fidler, AE, Friis, G, Parody-Merino, AM, Battley, PF, Cox, MP, Lima, NCB, Prosdocimi, F, Parchman, TL, Schlinger, BA, Loiselle, BA, Blake, JG, Lim, HC, Day, LB, Fuxjager, MJ, Baldwin, MW, Braun, MJ, Wirthlin, M, Dikow, RB, Ryder, TB, Camenisch, G, Keller, LF, DaCosta, JM, Hauber, ME, Louder, MIM, Witt, CC, McGuire, JA, Mudge, J, Megna, LC, Carling, MD, Wang, B, Taylor, SA, Del-Rio, G, Aleixo, A, Vasconcelos, ATR, Mello, CV, Weir, JT, Haussler, D, Li, Q, Yang, H, Wang, J, Lei, F, Rahbek, C, Gilbert, MTP, Graves, GR, Jarvis, ED, Paten, B, Zhang, G, Feng, S, Stiller, J, Deng, Y, Armstrong, J, Fang, Q, Reeve, AH, Xie, D, Chen, G, Guo, C, Faircloth, BC, Petersen, B, Wang, Z, Zhou, Q, Diekhans, M, Chen, W, Andreu-Sanchez, S, Margaryan, A, Howard, JT, Parent, C, Pacheco, G, Sinding, M-HS, Puetz, L, Cavill, E, Ribeiro, AM, Eckhart, L, Fjeldsa, J, Hosner, PA, Brumfield, RT, Christidis, L, Bertelsen, MF, Sicheritz-Ponten, T, Tietze, DT, Robertson, BC, Song, G, Borgia, G, Claramunt, S, Lovette, IJ, Cowen, SJ, Njoroge, P, Dumbacher, JP, Ryder, OA, Fuchs, J, Bunce, M, Burt, DW, Cracraft, J, Meng, G, Hackett, SJ, Ryan, PG, Jonsson, KA, Jamieson, IG, da Fonseca, RR, Braun, EL, Houde, P, Mirarab, S, Suh, A, Hansson, B, Ponnikas, S, Sigeman, H, Stervander, M, Frandsen, PB, van der Zwan, H, van der Sluis, R, Visser, C, Balakrishnan, CN, Clark, AG, Fitzpatrick, JW, Bowman, R, Chen, N, Cloutier, A, Sackton, TB, Edwards, SV, Foote, DJ, Shakya, SB, Sheldon, FH, Vignal, A, Soares, AER, Shapiro, B, Gonzalez-Solis, J, Ferrer-Obiol, J, Rozas, J, Riutort, M, Tigano, A, Friesen, V, Dalen, L, Urrutia, AO, Szekely, T, Liu, Y, Campana, MG, Corvelo, A, Fleischer, RC, Rutherford, KM, Gemmell, NJ, Dussex, N, Mouritsen, H, Thiele, N, Delmore, K, Liedvogel, M, Franke, A, Hoeppner, MP, Krone, O, Fudickar, AM, Mila, B, Ketterson, ED, Fidler, AE, Friis, G, Parody-Merino, AM, Battley, PF, Cox, MP, Lima, NCB, Prosdocimi, F, Parchman, TL, Schlinger, BA, Loiselle, BA, Blake, JG, Lim, HC, Day, LB, Fuxjager, MJ, Baldwin, MW, Braun, MJ, Wirthlin, M, Dikow, RB, Ryder, TB, Camenisch, G, Keller, LF, DaCosta, JM, Hauber, ME, Louder, MIM, Witt, CC, McGuire, JA, Mudge, J, Megna, LC, Carling, MD, Wang, B, Taylor, SA, Del-Rio, G, Aleixo, A, Vasconcelos, ATR, Mello, CV, Weir, JT, Haussler, D, Li, Q, Yang, H, Wang, J, Lei, F, Rahbek, C, Gilbert, MTP, Graves, GR, Jarvis, ED, Paten, B, and Zhang, G
- Abstract
A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03473-8.
- Published
- 2021
6. Dense sampling of bird diversity increases power of comparative genomics
- Author
-
Feng, S, Stiller, J, Deng, Y, Armstrong, J, Fang, Q, Reeve, AH, Xie, D, Chen, G, Guo, C, Faircloth, BC, Petersen, B, Wang, Z, Zhou, Q, Diekhans, M, Chen, W, Andreu-Sanchez, S, Margaryan, A, Howard, JT, Parent, C, Pacheco, G, Sinding, M-HS, Puetz, L, Cavill, E, Ribeiro, AM, Eckhart, L, Fjeldsa, J, Hosner, PA, Brumfield, RT, Christidis, L, Bertelsen, MF, Sicheritz-Ponten, T, Tietze, DT, Robertson, BC, Song, G, Borgia, G, Claramunt, S, Lovette, IJ, Cowen, SJ, Njoroge, P, Dumbacher, JP, Ryder, OA, Fuchs, J, Bunce, M, Burt, DW, Cracraft, J, Meng, G, Hackett, SJ, Ryan, PG, Jonsson, KA, Jamieson, IG, da Fonseca, RR, Braun, EL, Houde, P, Mirarab, S, Suh, A, Hansson, B, Ponnikas, S, Sigeman, H, Stervander, M, Frandsen, PB, van der Zwan, H, van der Sluis, R, Visser, C, Balakrishnan, CN, Clark, AG, Fitzpatrick, JW, Bowman, R, Chen, N, Cloutier, A, Sackton, TB, Edwards, SV, Foote, DJ, Shakya, SB, Sheldon, FH, Vignal, A, Soares, AER, Shapiro, B, Gonzalez-Solis, J, Ferrer-Obiol, J, Rozas, J, Riutort, M, Tigano, A, Friesen, V, Dalen, L, Urrutia, AO, Szekely, T, Liu, Y, Campana, MG, Corvelo, A, Fleischer, RC, Rutherford, KM, Gemmell, NJ, Dussex, N, Mouritsen, H, Thiele, N, Delmore, K, Liedvogel, M, Franke, A, Hoeppner, MP, Krone, O, Fudickar, AM, Mila, B, Ketterson, ED, Fidler, AE, Friis, G, Parody-Merino, AM, Battley, PF, Cox, MP, Lima, NCB, Prosdocimi, F, Parchman, TL, Schlinger, BA, Loiselle, BA, Blake, JG, Lim, HC, Day, LB, Fuxjager, MJ, Baldwin, MW, Braun, MJ, Wirthlin, M, Dikow, RB, Ryder, TB, Camenisch, G, Keller, LF, DaCosta, JM, Hauber, ME, Louder, MIM, Witt, CC, McGuire, JA, Mudge, J, Megna, LC, Carling, MD, Wang, B, Taylor, SA, Del-Rio, G, Aleixo, A, Vasconcelos, ATR, Mello, CV, Weir, JT, Haussler, D, Li, Q, Yang, H, Wang, J, Lei, F, Rahbek, C, Gilbert, MTP, Graves, GR, Jarvis, ED, Paten, B, Zhang, G, Feng, S, Stiller, J, Deng, Y, Armstrong, J, Fang, Q, Reeve, AH, Xie, D, Chen, G, Guo, C, Faircloth, BC, Petersen, B, Wang, Z, Zhou, Q, Diekhans, M, Chen, W, Andreu-Sanchez, S, Margaryan, A, Howard, JT, Parent, C, Pacheco, G, Sinding, M-HS, Puetz, L, Cavill, E, Ribeiro, AM, Eckhart, L, Fjeldsa, J, Hosner, PA, Brumfield, RT, Christidis, L, Bertelsen, MF, Sicheritz-Ponten, T, Tietze, DT, Robertson, BC, Song, G, Borgia, G, Claramunt, S, Lovette, IJ, Cowen, SJ, Njoroge, P, Dumbacher, JP, Ryder, OA, Fuchs, J, Bunce, M, Burt, DW, Cracraft, J, Meng, G, Hackett, SJ, Ryan, PG, Jonsson, KA, Jamieson, IG, da Fonseca, RR, Braun, EL, Houde, P, Mirarab, S, Suh, A, Hansson, B, Ponnikas, S, Sigeman, H, Stervander, M, Frandsen, PB, van der Zwan, H, van der Sluis, R, Visser, C, Balakrishnan, CN, Clark, AG, Fitzpatrick, JW, Bowman, R, Chen, N, Cloutier, A, Sackton, TB, Edwards, SV, Foote, DJ, Shakya, SB, Sheldon, FH, Vignal, A, Soares, AER, Shapiro, B, Gonzalez-Solis, J, Ferrer-Obiol, J, Rozas, J, Riutort, M, Tigano, A, Friesen, V, Dalen, L, Urrutia, AO, Szekely, T, Liu, Y, Campana, MG, Corvelo, A, Fleischer, RC, Rutherford, KM, Gemmell, NJ, Dussex, N, Mouritsen, H, Thiele, N, Delmore, K, Liedvogel, M, Franke, A, Hoeppner, MP, Krone, O, Fudickar, AM, Mila, B, Ketterson, ED, Fidler, AE, Friis, G, Parody-Merino, AM, Battley, PF, Cox, MP, Lima, NCB, Prosdocimi, F, Parchman, TL, Schlinger, BA, Loiselle, BA, Blake, JG, Lim, HC, Day, LB, Fuxjager, MJ, Baldwin, MW, Braun, MJ, Wirthlin, M, Dikow, RB, Ryder, TB, Camenisch, G, Keller, LF, DaCosta, JM, Hauber, ME, Louder, MIM, Witt, CC, McGuire, JA, Mudge, J, Megna, LC, Carling, MD, Wang, B, Taylor, SA, Del-Rio, G, Aleixo, A, Vasconcelos, ATR, Mello, CV, Weir, JT, Haussler, D, Li, Q, Yang, H, Wang, J, Lei, F, Rahbek, C, Gilbert, MTP, Graves, GR, Jarvis, ED, Paten, B, and Zhang, G
- Abstract
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
- Published
- 2020
7. Pigeon Cryptochrome4 bound to flavin adenine dinucleotide
- Author
-
Zoltowski, B.D., primary, Chelliah, Y., additional, Wickramaratne, A.C., additional, Jarocha, L., additional, Karki, N., additional, Mouritsen, H., additional, Hore, P.J., additional, Hibbs, R.E., additional, Green, C.B., additional, and Takahashi, J.S., additional
- Published
- 2019
- Full Text
- View/download PDF
8. Crystal structure of pigeon Cryptochrome 4 mutant Y319D in complex with flavin adenine dinucleotide
- Author
-
Zoltowski, B.D., primary, Chelliah, Y., additional, Wickramaratne, A.C., additional, Jarocha, L., additional, Karki, N., additional, Mouritsen, H., additional, Hore, P.J., additional, Hibbs, R.E., additional, Green, C.B., additional, and Takahashi, J.S., additional
- Published
- 2019
- Full Text
- View/download PDF
9. Magnetic field effects on Drosophila melanogaster and avian cryptochromes
- Author
-
Bassetto, M, Hore, P, and Mouritsen, H
- Subjects
Biophysics - Abstract
One of the major challenges in the field of sensory biology is to understand the process by which migratory songbirds sense the direction of the Earth’s magnetic field. This phenomenon, which has fascinated biologists for decades, has seen a growth of interest in the recent years. This poorly understood “sixth sense” has focused the attention of scientists from a variety of disciplines, from biology to theoretical physics. This multidisciplinarity is reflected in the work presented in this thesis, which spans animal behaviour, biochemistry, and spectroscopy. The common thread that links these experiments is the need to gain a better understanding of the radical pair mechanism of magnetoreception. According to this hypothesis, animals perceive magnetic fields by means of magnetically sensitive radicals formed by light-excitation of photosensitive flavoproteins called cryptochromes. The first project, presented in Chapter 2, was an investigation of magnetic field effects on Drosophila melanogaster negative geotaxis. Two sets of equipment were built, experiments were conducted in a meticulously controlled environment, and strong statistical tests were applied to a large-scale dataset, but it proved impossible to reproduce the magnetic field effects reported in the literature. The second project, presented in Chapter 3, was to test whether avian cryptochromes 1a and 1b could be the magnetoreceptor molecules. The proteins were expressed and purified and their binding affinity for flavin adenine dinucleotide, the chromophore responsible for light activation of the protein, was determined. It was concluded that cryptochromes 1a and 1b cannot be the magnetoreceptors, even though they have been considered ideal candidates for many years. Finally, the third project, described in Chapter 4, was a comparative study of the spectroscopic properties and magnetic sensitivity of avian cryptochrome 4s from different species using Broadband Cavity-Enhanced Absorption Spectroscopy. This technique has the advantage of detecting the change in the optical absorbance of photo-induced radicals when the proteins are exposed to an external magnetic field. Striking differences were found between cryptochrome 4s from migratory and non-migratory birds.
- Published
- 2020
10. Species-specific circuitry of double cone photoreceptors in two avian retinas.
- Author
-
Günther A, Haverkamp S, Irsen S, Watkins PV, Dedek K, Mouritsen H, and Briggman KL
- Subjects
- Animals, Songbirds physiology, Retinal Bipolar Cells metabolism, Retinal Cone Photoreceptor Cells metabolism, Retinal Cone Photoreceptor Cells physiology, Chickens, Species Specificity, Retina physiology
- Abstract
In most avian retinas, double cones (consisting of a principal and accessory member) outnumber other photoreceptor types and have been associated with various functions, such as encoding luminance, sensing polarized light, and magnetoreception. However, their down-stream circuitry is poorly understood, particularly across bird species. Analysing species differences is important to understand changes in circuitry driven by ecological adaptations. We compare the ultrastructure of double cones and their postsynaptic bipolar cells between a night-migratory European robin and non-migratory chicken. We discover four previously unidentified bipolar cell types in the European robin retina, including midget-like bipolar cells mainly connected to one principal member. A downstream ganglion cell reveals a complete midget-like circuit similar to a circuit in the peripheral primate retina. Additionally, we identify a selective circuit transmitting information from a specific subset of accessory members. Our data highlight species-specific differences in double cone to bipolar cell connectivity, potentially reflecting ecological adaptations., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
11. Bassetto et al. reply.
- Author
-
Bassetto M, Reichl T, Kobylkov D, Kattnig DR, Winklhofer M, Hore PJ, and Mouritsen H
- Published
- 2024
- Full Text
- View/download PDF
12. Adaptive evolution and loss of a putative magnetoreceptor in passerines.
- Author
-
Langebrake C, Manthey G, Frederiksen A, Lugo Ramos JS, Dutheil JY, Chetverikova R, Solov'yov IA, Mouritsen H, and Liedvogel M
- Subjects
- Animals, Phylogeny, Cryptochromes metabolism, Magnetic Fields, Animal Migration physiology, Songbirds physiology
- Abstract
Migratory birds possess remarkable accuracy in orientation and navigation, which involves various compass systems including the magnetic compass. Identifying the primary magnetosensor remains a fundamental open question. Cryptochromes (Cry) have been shown to be magnetically sensitive, and Cry4a from a migratory songbird seems to show enhanced magnetic sensitivity in vitro compared to Cry4a from resident species. We investigate Cry and their potential involvement in magnetoreception in a phylogenetic framework, integrating molecular evolutionary analyses with protein dynamics modelling. Our analysis is based on 363 bird genomes and identifies different selection regimes in passerines. We show that Cry4a is characterized by strong positive selection and high variability, typical characteristics of sensor proteins. We identify key sites that are likely to have facilitated the evolution of an optimized sensory protein for night-time orientation in songbirds. Additionally, we show that Cry4 was lost in hummingbirds, parrots and Tyranni (Suboscines), and thus identified a gene deletion, which might facilitate testing the function of Cry4a in birds. In contrast, the other avian Cry (Cry1 and Cry2) were highly conserved across all species, indicating basal, non-sensory functions. Our results support a specialization or functional differentiation of Cry4 in songbirds which could be magnetosensation.
- Published
- 2024
- Full Text
- View/download PDF
13. Singlet-triplet dephasing in radical pairs in avian cryptochromes leads to time-dependent magnetic field effects.
- Author
-
Golesworthy MJ, Zollitsch T, Luo J, Selby D, Jarocha LE, Henbest KB, Paré-Labrosse O, Bartölke R, Schmidt J, Xu J, Mouritsen H, Hore PJ, Timmel CR, and Mackenzie SR
- Subjects
- Animals, Magnetic Fields, Animal Migration, Chickens physiology, Cryptochromes chemistry, Cryptochromes physiology, Avian Proteins
- Abstract
Cryptochrome 4a (Cry4a) has been proposed as the sensor at the heart of the magnetic compass in migratory songbirds. Blue-light excitation of this protein produces magnetically sensitive flavin-tryptophan radical pairs whose properties suggest that Cry4a could indeed be suitable as a magnetoreceptor. Here, we use cavity ring-down spectroscopy to measure magnetic field effects on the kinetics of these radical pairs in modified Cry4a proteins from the migratory European robin and from nonmigratory pigeon and chicken. B1/2, a parameter that characterizes the magnetic field-dependence of the reactions, was found to be larger than expected on the basis of hyperfine interactions and to increase with the delay between pump and probe laser pulses. Semiclassical spin dynamics simulations show that this behavior is consistent with a singlet-triplet dephasing (STD) relaxation mechanism. Analysis of the experimental data gives dephasing rate constants, rSTD, in the range 3-6 × 107 s-1. A simple "toy" model due to Maeda, Miura, and Arai [Mol. Phys. 104, 1779-1788 (2006)] is used to shed light on the origin of the time-dependence and the nature of the STD mechanism. Under the conditions of the experiments, STD results in an exponential approach to spin equilibrium at a rate considerably slower than rSTD. We attribute the loss of singlet-triplet coherence to electron hopping between the second and third tryptophans of the electron transfer chain and comment on whether this process could explain differences in the magnetic sensitivity of robin, chicken, and pigeon Cry4a's., (© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2023
- Full Text
- View/download PDF
14. No evidence for magnetic field effects on the behaviour of Drosophila.
- Author
-
Bassetto M, Reichl T, Kobylkov D, Kattnig DR, Winklhofer M, Hore PJ, and Mouritsen H
- Subjects
- Animals, Animal Migration, Cryptochromes metabolism, Songbirds physiology, Models, Animal, Escape Reaction, Maze Learning, Sample Size, Light, Magnetic Fields, Drosophila melanogaster physiology, Negative Results
- Abstract
Migratory songbirds have the remarkable ability to extract directional information from the Earth's magnetic field
1,2 . The exact mechanism of this light-dependent magnetic compass sense, however, is not fully understood. The most promising hypothesis focuses on the quantum spin dynamics of transient radical pairs formed in cryptochrome proteins in the retina3-5 . Frustratingly, much of the supporting evidence for this theory is circumstantial, largely because of the extreme challenges posed by genetic modification of wild birds. Drosophila has therefore been recruited as a model organism, and several influential reports of cryptochrome-mediated magnetic field effects on fly behaviour have been widely interpreted as support for a radical pair-based mechanism in birds6-23 . Here we report the results of an extensive study testing magnetic field effects on 97,658 flies moving in a two-arm maze and on 10,960 flies performing the spontaneous escape behaviour known as negative geotaxis. Under meticulously controlled conditions and with vast sample sizes, we have been unable to find evidence for magnetically sensitive behaviour in Drosophila. Moreover, after reassessment of the statistical approaches and sample sizes used in the studies that we tried to replicate, we suggest that many-if not all-of the original results were false positives. Our findings therefore cast considerable doubt on the existence of magnetic sensing in Drosophila and thus strongly suggest that night-migratory songbirds remain the organism of choice for elucidating the mechanism of light-dependent magnetoreception., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
15. Dimerization of European Robin Cryptochrome 4a.
- Author
-
Hanić M, Antill LM, Gehrckens AS, Schmidt J, Görtemaker K, Bartölke R, El-Baba TJ, Xu J, Koch KW, Mouritsen H, Benesch JLP, Hore PJ, and Solov'yov IA
- Subjects
- Animals, Dimerization, Light, Cryptochromes chemistry, Songbirds metabolism
- Abstract
Homo-dimer formation is important for the function of many proteins. Although dimeric forms of cryptochromes (Cry) have been found by crystallography and were recently observed in vitro for European robin Cry4a, little is known about the dimerization of avian Crys and the role it could play in the mechanism of magnetic sensing in migratory birds. Here, we present a combined experimental and computational investigation of the dimerization of robin Cry4a resulting from covalent and non-covalent interactions. Experimental studies using native mass spectrometry, mass spectrometric analysis of disulfide bonds, chemical cross-linking, and photometric measurements show that disulfide-linked dimers are routinely formed, that their formation is promoted by exposure to blue light, and that the most likely cysteines are C317 and C412. Computational modeling and molecular dynamics simulations were used to generate and assess a number of possible dimer structures. The relevance of these findings to the proposed role of Cry4a in avian magnetoreception is discussed.
- Published
- 2023
- Full Text
- View/download PDF
16. Mutational Study of the Tryptophan Tetrad Important for Electron Transfer in European Robin Cryptochrome 4a.
- Author
-
Frederiksen A, Langebrake C, Hanić M, Manthey G, Mouritsen H, Liedvogel M, and Solov'yov IA
- Abstract
The ability of migratory birds to sense magnetic fields has been known for decades, although the understanding of the underlying mechanism is still elusive. Currently, the strongest magnetoreceptor candidate in birds is a protein called cryptochrome 4a. The cryptochrome 4a protein has changed through evolution, apparently endowing some birds with a more pronounced magnetic sensitivity than others. Using phylogenetic tools, we show that a specific tryptophan tetrad and a tyrosine residue predicted to be essential for cryptochrome activation are highly conserved in the avian clade. Through state-of-the-art molecular dynamics simulations and associated analyses, we also studied the role of these specific residues and the associated mutants on the overall dynamics of the protein. The analyses of the single residue mutations were used to judge how far a local change in the protein structure can impact specific dynamics of European robin cryptochrome 4a. We conclude that the replacements of each of the tryptophans one by one with a phenylalanine do not compromise the overall stability of the protein., Competing Interests: The authors declare no competing financial interest., (© 2023 The Authors. Published by American Chemical Society.)
- Published
- 2023
- Full Text
- View/download PDF
17. Upper bound for broadband radiofrequency field disruption of magnetic compass orientation in night-migratory songbirds.
- Author
-
Leberecht B, Wong SY, Satish B, Döge S, Hindman J, Venkatraman L, Apte S, Haase K, Musielak I, Dautaj G, Solov'yov IA, Winklhofer M, Mouritsen H, and Hore PJ
- Subjects
- Animals, Photochemical Processes, Animal Migration, Magnetic Fields, Cryptochromes metabolism, Songbirds metabolism, Taxis Response
- Abstract
Night-migratory songbirds have a light-dependent magnetic compass sense, the mechanism of which is thought to depend on the photochemical formation of radical pairs in cryptochrome (Cry) proteins located in the retina. The finding that weak radiofrequency (RF) electromagnetic fields can prevent birds from orienting in the Earth's magnetic field has been regarded as a diagnostic test for this mechanism and as a potential source of information on the identities of the radicals. The maximum frequency that could cause such disorientation has been predicted to lie between 120 and 220 MHz for a flavin-tryptophan radical pair in Cry. Here we show that the magnetic orientation capabilities of Eurasian blackcaps ( Sylvia atricapilla ) are not affected by RF noise in the frequency bands 140 to 150 MHz and 235 to 245 MHz. From a consideration of its internal magnetic interactions, we argue that RF field effects on a flavin-containing radical-pair sensor should be approximately independent of frequency up to 116 MHz and that birds' sensitivity to RF disorientation should fall by about two orders of magnitude when the frequency exceeds 116 MHz. Taken together with our earlier finding that 75 to 85 MHz RF fields disrupt the magnetic orientation of blackcaps, these results provide compelling evidence that the magnetic compass of migratory birds operates by a radical pair mechanism.
- Published
- 2023
- Full Text
- View/download PDF
18. Tracking the Electron Transfer Cascade in European Robin Cryptochrome 4 Mutants.
- Author
-
Timmer D, Frederiksen A, Lünemann DC, Thomas AR, Xu J, Bartölke R, Schmidt J, Kubař T, De Sio A, Solov'yov IA, Mouritsen H, and Lienau C
- Subjects
- Electrons, Electron Transport, Magnetic Fields, Flavins metabolism, Cryptochromes chemistry, Tryptophan chemistry
- Abstract
The primary step in the mechanism by which migratory birds sense the Earth's magnetic field is thought to be the light-induced formation of long-lived magnetically sensitive radical pairs within cryptochrome flavoproteins located in the birds' retinas. Blue-light absorption by the non-covalently bound flavin chromophore triggers sequential electron transfers along a chain of four tryptophan residues toward the photoexcited flavin. The recently demonstrated ability to express cryptochrome 4a from the night-migratory European robin ( Erithacus rubecula ), Er Cry4a, and to replace each of the tryptophan residues by a redox-inactive phenylalanine offers the prospect of exploring the roles of the four tryptophans. Here, we use ultrafast transient absorption spectroscopy to compare wild type Er Cry4a and four mutants having a phenylalanine at different positions in the chain. We find that each of the three tryptophan residues closest to the flavin adds a distinct relaxation component (time constants: 0.5, 30, and 150 ps) in the transient absorption data. The dynamics of the mutant containing a phenylalanine at the fourth position, furthest from the flavin, are very similar to those of wild type Er Cry4a, except for a reduced concentration of long-lived radical pairs. The experimental results are evaluated and discussed in the framework of real-time quantum mechanical/molecular mechanical electron transfer simulations based on the density functional-based tight binding approach. This comparison between simulation results and experimental measurements provides a detailed microscopic insight into the sequential electron transfers along the tryptophan chain. Our results offer a route to the study of spin transport and dynamical spin correlations in flavoprotein radical pairs.
- Published
- 2023
- Full Text
- View/download PDF
19. Coral reef fish larvae show no evidence for map-based navigation after physical displacement.
- Author
-
Spiecker L, Curdt F, Bally A, Janzen N, Kraemer P, Leberecht B, Kingsford MJ, Mouritsen H, Winklhofer M, and Gerlach G
- Abstract
Millions of minute, newly hatched coral reef fish larvae get carried into the open ocean by highly complex and variable currents. To survive, they must return to a suitable reef habitat within a species-specific time. Strikingly, previous studies have demonstrated that return to home reefs is much more frequent than would be expected by chance. It has been shown that magnetic and sun compass orientation can help cardinalfish maintain their innate swimming direction but do they also have a navigational map to cope with unexpected displacements? If displaced settling-stage cardinalfish Ostorhinchus doederleini use positional information during their pelagic dispersal, we would expect them to re-orient toward their home reef. However, after physical displacement by 180 km, the fish showed a swimming direction indistinguishable from original directions near the capture site. This suggests that the tested fish rely on innate or learned compass directions and show no evidence for map-based navigation., Competing Interests: The authors declare no competing interests., (© 2023 The Authors.)
- Published
- 2023
- Full Text
- View/download PDF
20. Immunohistochemical characterization of bipolar cells in four distantly related avian species.
- Author
-
Balaji V, Haverkamp S, Seth PK, Günther A, Mendoza E, Schmidt J, Herrmann M, Pfeiffer LL, Němec P, Scharff C, Mouritsen H, and Dedek K
- Subjects
- Animals, Retina chemistry, Microscopy, Electron, Synapses metabolism, Chickens, Retinal Cone Photoreceptor Cells, Retinal Bipolar Cells, Secretagogins metabolism, Songbirds
- Abstract
Visual (and probably also magnetic) signal processing starts at the first synapse, at which photoreceptors contact different types of bipolar cells, thereby feeding information into different processing channels. In the chicken retina, 15 and 22 different bipolar cell types have been identified based on serial electron microscopy and single-cell transcriptomics, respectively. However, immunohistochemical markers for avian bipolar cells were only anecdotally described so far. Here, we systematically tested 12 antibodies for their ability to label individual bipolar cells in the bird retina and compared the eight most suitable antibodies across distantly related species, namely domestic chicken, domestic pigeon, common buzzard, and European robin, and across retinal regions. While two markers (GNB3 and EGFR) labeled specifically ON bipolar cells, most markers labeled in addition to bipolar cells also other cell types in the avian retina. Staining pattern of four markers (CD15, PKCα, PKCβ, secretagogin) was species-specific. Two markers (calbindin and secretagogin) showed a different expression pattern in central and peripheral retina. For the chicken and European robin, we found slightly more ON bipolar cell somata in the inner nuclear layer than OFF bipolar cell somata. In contrast, OFF bipolar cells made more ribbon synapses than ON bipolar cells in the inner plexiform layer of these species. Finally, we also analyzed the photoreceptor connectivity of selected bipolar cell types in the European robin retina. In summary, we provide a catalog of bipolar cell markers for different bird species, which will greatly facilitate analyzing the retinal circuitry of birds on a larger scale., (© 2022 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC.)
- Published
- 2023
- Full Text
- View/download PDF
21. Isotope Substitution Effects on the Magnetic Compass Properties of Cryptochrome-Based Radical Pairs: A Computational Study.
- Author
-
Pažėra GJ, Benjamin P, Mouritsen H, and Hore PJ
- Subjects
- Magnetics, Flavins metabolism, Cryptochromes chemistry, Magnetic Fields
- Abstract
The biophysical mechanism of the magnetic compass sense of migratory songbirds is thought to rely on the photochemical reactions of flavin-containing radical pairs in cryptochrome proteins located in the birds' eyes. A consequence of this hypothesis is that the effect of the Earth's magnetic field on the quantum yields of reaction products should be sensitive to isotopic substitutions that modify the hyperfine interactions in the radicals. In this report, we use spin dynamics simulations to explore the effects of
1 H →2 H,12 C →13 C, and14 N →15 N isotopic substitutions on the functioning of cryptochrome 4a as a magnetic direction sensor. Two main conclusions emerge. (1) Uniform deuteration of the flavin chromophore appears to be the best way to boost the anisotropy of the magnetic field effect and to change its symmetry. (2)13 C substitution of three of the 12 flavin carbons, in particular C4, C4a, and C8α, seems to be the best recipe for attenuating the anisotropy. These predictions should give insight into the factors that control the magnetic sensitivity once spectroscopic techniques are available for measuring magnetic field effects on oriented protein samples.- Published
- 2023
- Full Text
- View/download PDF
22. Morphology, biochemistry and connectivity of Cluster N and the hippocampal formation in a migratory bird.
- Author
-
Heyers D, Musielak I, Haase K, Herold C, Bolte P, Güntürkün O, and Mouritsen H
- Subjects
- Animals, Hippocampus, Brain physiology, Neurons physiology, Animal Migration physiology, Songbirds anatomy & histology, Songbirds physiology
- Abstract
The exceptional navigational capabilities of migrating birds are based on the perception and integration of a variety of natural orientation cues. The "Wulst" in the forebrain of night-migratory songbirds contains a brain area named "Cluster N", which is involved in processing directional navigational information derived from the Earth´s magnetic field. Cluster N is medially joined by the hippocampal formation, known to retrieve and utilise navigational information. To investigate the connectivity and neurochemical characteristics of Cluster N and the hippocampal formation of migratory birds, we performed morphological and histochemical analyses based on the expression of calbindin, calretinin, parvalbumin, glutamate receptor type 1 and early growth response protein-1 in the night-migratory Garden warbler (Sylvia borin) and mapped their mutual connections using neuronal tract tracing. The resulting expression patterns revealed regionally restricted neurochemical features, which mapped well onto the hippocampal and hyperpallial substructures known from other avian species. Magnetic field-induced neuronal activation covered caudal parts of the hyperpallium and the medially adjacent hippocampal dorsomedial/dorsolateral subdivisions. Neuronal tract tracings revealed connections between Cluster N and the hippocampal formation with the vast majority originating from the densocellular hyperpallium, either directly or indirectly via the area corticoidea dorsolateralis. Our data indicate that the densocellular hyperpallium could represent a central relay for the transmission of magnetic compass information to the hippocampal formation where it might be integrated with other navigational cues in night-migratory songbirds., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
23. Morphology of the "prefrontal" nidopallium caudolaterale in the long-distance night-migratory Eurasian blackcap (Sylvia atricapilla).
- Author
-
Kobylkov D, Musielak I, Haase K, Rook N, von Eugen K, Dedek K, Güntürkün O, Mouritsen H, and Heyers D
- Subjects
- Animals, Brain, Dopamine, Mammals, Prefrontal Cortex physiology, Seasons, Telencephalon, Passeriformes physiology
- Abstract
Migrating birds have developed remarkable navigational capabilities to successfully master biannual journeys between their breeding and wintering grounds. To reach their intended destination, they need to calculate navigational goals from a large variety of natural directional and positional cues to set a meaningful motor output command. One brain area, which has been associated with such executive functions, is the nidopallium caudolaterale (NCL), which, due to its striking similarities in terms of neurochemistry, connectivity and function, is considered analogous to the mammalian prefrontal cortex. To establish a baseline for further analyses elucidating the neuronal correlates underlying avian navigation, we performed quantitative and qualitative analyses of dopaminergic fibres in the brains of long-distance night-migratory Eurasian blackcaps (Sylvia atricapilla). We identified four regions in the caudal telencephalon, each of which was characterized by its specific dopaminergic innervation pattern. At least three of them presumably constitute subareas of the NCL in Eurasian blackcaps and could thus be involved in integrating navigational input from different sensory systems. The observed heterogeneity and parcellation of the NCL subcompartments in this migratory species could be a consequence of the special demands related to navigation., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
24. Access to the sky near the horizon and stars does not play a crucial role in compass calibration of European songbird migrants.
- Author
-
Pakhomov A, Prokshina A, Cellarius F, Mouritsen H, and Chernetsov N
- Subjects
- Animal Migration, Animals, Calibration, Cues, Magnetic Fields, Orientation, Songbirds
- Abstract
Migratory birds use different global cues including celestial and magnetic information to determine and maintain their seasonally appropriate migratory direction. A hierarchy among different compass systems in songbird migrants is still a matter for discussion owing to highly variable and apparently contradictory results obtained in various experimental studies. How birds decide whether and how they should calibrate their compasses before departure remains unclear. A recent 'extended unified theory' suggested that access to both a view of the sky near the horizon and stars during the cue-conflict exposure might be crucial for the results of cue-conflict experiments. In this study, we performed cue-conflict experiments in three European songbird species with different migratory strategies (garden warbler, Sylvia borin; pied flycatcher, Ficedula hypoleuca; and European robin, Erithacus rubecula; juveniles and adults; spring and autumn migrations) using a uniform experimental protocol. We exposed birds to the natural celestial cues in a shifted (120 deg clockwise/counterclockwise) magnetic field from sunset to the end of the nautical twilight and tested them in orientation cages immediately after cue-conflict treatments. None of the species (apart from adult robins) showed any sign of calibration even if they had access to a view of the sky and local surroundings near the horizon and stars during cue-conflict treatments. Based on results of our experiments and data from previous contradictory studies, we suggest that no uniform theory can explain why birds calibrate or do not calibrate their compass systems. Each species (and possibly even different populations) may choose its calibration strategy differently., Competing Interests: Competing interests The authors declare no competing or financial interests., (© 2022. Published by The Company of Biologists Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
25. Computational Reconstruction and Analysis of Structural Models of Avian Cryptochrome 4.
- Author
-
Hanić M, Schuhmann F, Frederiksen A, Langebrake C, Manthey G, Liedvogel M, Xu J, Mouritsen H, and Solov'yov IA
- Subjects
- Animals, Cryptochromes chemistry, Magnetic Fields, Models, Structural, Avian Proteins metabolism, Songbirds metabolism
- Abstract
A recent study by Xu et al. ( Nature , 2021 , 594, 535-540) provided strong evidence that cryptochrome 4 (Cry4) is a key protein to endow migratory birds with the magnetic compass sense. The investigation compared the magnetic field response of Cry4 from migratory and nonmigratory bird species and suggested that a difference in magnetic sensitivity could exist. This finding prompted an in-depth investigation into Cry4 protein differences on the structural and dynamic levels. In the present study, the pigeon Cry4 ( Cl Cry4) crystal structure was used to reconstruct the missing avian Cry4 protein structures via homology modeling for carefully selected bird species. The reconstructed Cry4 structure from European robin, Eurasian blackcap, zebra finch, chicken, and pigeon were subsequently simulated dynamically and analyzed. The studied avian Cry4 structures show flexibility in analogous regions pointing to similar activation mechanisms and/or signaling interaction partners. It can be concluded that the experimentally recorded difference in the magnetic field sensitivity of Cry4 from different birds is unlikely to be due to solely intrinsic dynamics of the proteins but requires additional factors that have not yet been identified.
- Published
- 2022
- Full Text
- View/download PDF
26. Direct Interaction of Avian Cryptochrome 4 with a Cone Specific G-Protein.
- Author
-
Görtemaker K, Yee C, Bartölke R, Behrmann H, Voß JO, Schmidt J, Xu J, Solovyeva V, Leberecht B, Behrmann E, Mouritsen H, and Koch KW
- Subjects
- Animals, GTP-Binding Proteins metabolism, Magnetic Fields, Retina metabolism, Cryptochromes metabolism, Songbirds metabolism
- Abstract
Background: Night-migratory birds sense the Earth's magnetic field by an unknown molecular mechanism. Theoretical and experimental evidence support the hypothesis that the light-induced formation of a radical-pair in European robin cryptochrome 4a (ErCry4a) is the primary signaling step in the retina of the bird. In the present work, we investigated a possible route of cryptochrome signaling involving the α-subunit of the cone-secific heterotrimeric G protein from European robin., Methods: Protein-protein interaction studies include surface plasmon resonance, pulldown affinity binding and Förster resonance energy transfer., Results: Surface plasmon resonance studies showed direct interaction, revealing high to moderate affinity for binding of non-myristoylated and myristoylated G protein to ErCry4a, respectively. Pulldown affinity experiments confirmed this complex formation in solution. We validated these in vitro data by monitoring the interaction between ErCry4a and G protein in a transiently transfected neuroretinal cell line using Förster resonance energy transfer., Conclusions: Our results suggest that ErCry4a and the G protein also interact in living cells and might constitute the first biochemical signaling step in radical-pair-based magnetoreception.
- Published
- 2022
- Full Text
- View/download PDF
27. Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing.
- Author
-
Chetverikova R, Dautaj G, Schwigon L, Dedek K, and Mouritsen H
- Subjects
- Animals, Chickens, Light, Magnetic Fields, Retina, Retinal Cone Photoreceptor Cells, Songbirds physiology
- Abstract
To navigate between breeding and wintering grounds, night-migratory songbirds are aided by a light-dependent magnetic compass sense and maybe also by polarized light vision. Although the underlying mechanisms for magnetoreception and polarized light sensing remain unclear, double cone photoreceptors in the avian retina have been suggested to represent the primary sensory cells. To use these senses, birds must be able to separate the directional information from the Earth's magnetic field and/or light polarization from variations in light intensity. Theoretical considerations suggest that this could be best achieved if neighbouring double cones were oriented in an ordered pattern. Therefore, we investigate the orientation patterns of double cones in European robins ( Erithacus rubecula ) and domestic chickens ( Gallus gallus domesticus ). We used whole-mounted retinas labelled with double cone markers to quantify the orientations of individual double cones in relation to their nearest neighbours. In both species, our data show that the double cone array is highly ordered: the angles between neighbouring double cones were more likely to be 90°/-90° in the central retina and 180°/0° in the peripheral retina, respectively. The observed regularity in double cone orientation could aid the cells' putative function in light-dependent magnetoreception and/or polarized light sensing.
- Published
- 2022
- Full Text
- View/download PDF
28. The Quantum Nature of Bird Migration: Migratory birds travel vast distances between their breeding and wintering grounds. New research hints at the biophysical underpinnings of their internal navigation system.
- Author
-
Hore P and Mouritsen H
- Published
- 2022
- Full Text
- View/download PDF
29. In Search for the Avian Trigeminal Magnetic Sensor: Distribution of Peripheral and Central Terminals of Ophthalmic Sensory Neurons in the Night-Migratory Eurasian Blackcap ( Sylvia atricapilla ).
- Author
-
Haase K, Musielak I, Warmuth-Moles L, Leberecht B, Zolotareva A, Mouritsen H, and Heyers D
- Abstract
In night-migratory songbirds, neurobiological and behavioral evidence suggest the existence of a magnetic sense associated with the ophthalmic branch of the trigeminal nerve (V1), possibly providing magnetic positional information. Curiously, neither the unequivocal existence, structural nature, nor the exact location of any sensory structure has been revealed to date. Here, we used neuronal tract tracing to map both the innervation fields in the upper beak and the detailed trigeminal brainstem terminations of the medial and lateral V1 subbranches in the night-migratory Eurasian Blackcap ( Sylvia atricapilla ). The medial V1 subbranch takes its course along the ventral part of the upper beak to innervate subepidermal layers and the mucosa of the nasal cavity, whereas the lateral V1 subbranch runs along dorsolateral levels until the nostrils to innervate mainly the skin of the upper beak. In the trigeminal brainstem, medial V1 terminals innervate both the dorsal part and the ventral, magnetically activated part of the principal sensory trigeminal brainstem nuclei (PrV). In contrast, the lateral V1 subbranch innervates only a small part of the ventral PrV. The spinal sensory trigeminal brainstem nuclei (SpV) receive topographically ordered projections. The medial V1 subbranch mainly innervates rostral and medial parts of SpV, whereas the lateral V1 subbranch mainly innervates the lateral and caudal parts of SpV. The present findings could provide valuable information for further analysis of the trigeminal magnetic sense of birds., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Haase, Musielak, Warmuth-Moles, Leberecht, Zolotareva, Mouritsen and Heyers.)
- Published
- 2022
- Full Text
- View/download PDF
30. Magnetic stop signs signal a European songbird's arrival at the breeding site after migration.
- Author
-
Wynn J, Padget O, Mouritsen H, Morford J, Jaggers P, and Guilford T
- Subjects
- Animals, Europe, Reproduction, Animal Migration, Magnetic Fields, Songbirds physiology
- Abstract
Although it is known that birds can return to their breeding grounds with exceptional precision, it has remained a mystery how they know when and where to stop migrating. Using nearly a century's worth of Eurasian reed warbler ( Acrocephalus scirpaceus ) ringing recoveries, we investigated whether fluctuations in Earth's magnetic field predict variation in the sites to which birds return. Ringing recoveries suggest that magnetic inclination is learned before departure and is subsequently used as a uni-coordinate "stop sign" when relocating the natal or breeding site. However, many locations have the same inclination angle. Data from populations with different migratory directions indicate that birds solve this ambiguity by stopping at the first place where the right inclination is encountered on an inherited return vector.
- Published
- 2022
- Full Text
- View/download PDF
31. Broadband 75-85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor.
- Author
-
Leberecht B, Kobylkov D, Karwinkel T, Döge S, Burnus L, Wong SY, Apte S, Haase K, Musielak I, Chetverikova R, Dautaj G, Bassetto M, Winklhofer M, Hore PJ, and Mouritsen H
- Subjects
- Animal Migration, Animals, Cryptochromes metabolism, Flavins, Magnetic Fields, Tryptophan, Songbirds metabolism, Taxis Response
- Abstract
The light-dependent magnetic compass sense of night-migratory songbirds can be disrupted by weak radiofrequency fields. This finding supports a quantum mechanical, radical-pair-based mechanism of magnetoreception as observed for isolated cryptochrome 4, a protein found in birds' retinas. The exact identity of the magnetically sensitive radicals in cryptochrome is uncertain in vivo, but their formation seems to require a bound flavin adenine dinucleotide chromophore and a chain of four tryptophan residues within the protein. Resulting from the hyperfine interactions of nuclear spins with the unpaired electrons, the sensitivity of the radicals to radiofrequency magnetic fields depends strongly on the number of magnetic nuclei (hydrogen and nitrogen atoms) they contain. Quantum-chemical calculations suggested that electromagnetic noise in the frequency range 75-85 MHz could give information about the identity of the radicals involved. Here, we show that broadband 75-85 MHz radiofrequency fields prevent a night-migratory songbird from using its magnetic compass in behavioural experiments. These results indicate that at least one of the components of the radical pair involved in the sensory process of avian magnetoreception must contain a substantial number of strong hyperfine interactions as would be the case if a flavin-tryptophan radical pair were the magnetic sensor., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
32. Localisation of cryptochrome 2 in the avian retina.
- Author
-
Einwich A, Seth PK, Bartölke R, Bolte P, Feederle R, Dedek K, and Mouritsen H
- Subjects
- Animals, Chickens, Mammals metabolism, Retina physiology, Transcription Factors metabolism, Cryptochromes metabolism, Songbirds physiology
- Abstract
Cryptochromes are photolyase-related blue-light receptors acting as core components of the mammalian circadian clock in the cell nuclei. One or more members of the cryptochrome protein family are also assumed to play a role in avian magnetoreception, but the primary sensory molecule in the retina of migratory birds that mediates light-dependent magnetic compass orientation has still not been identified. The mRNA of cryptochrome 2 (Cry2) has been reported to be located in the cell nuclei of the retina, but Cry2 localisation has not yet been demonstrated at the protein level. Here, we provide evidence that Cry2 protein is located in the photoreceptor inner segments, the outer nuclear layer, the inner nuclear layer and the ganglion cell layer in the retina of night-migratory European robins, homing pigeons and domestic chickens. At the subcellular level, we find Cry2 both in the cytoplasm and the nucleus of cells residing in these layers. This broad nucleic expression rather points to a role for avian Cry2 in the circadian clock and is consistent with a function as a transcription factor, analogous to mammalian Cry2, and speaks against an involvement in magnetoreception., (© 2021. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
33. Cryptochrome magnetoreception: four tryptophans could be better than three.
- Author
-
Wong SY, Wei Y, Mouritsen H, Solov'yov IA, and Hore PJ
- Subjects
- Animals, Magnetic Fields, Signal Transduction, Tryptophan, Cryptochromes metabolism, Songbirds
- Abstract
The biophysical mechanism of the magnetic compass sensor in migratory songbirds is thought to involve photo-induced radical pairs formed in cryptochrome (Cry) flavoproteins located in photoreceptor cells in the eyes. In Cry4a-the most likely of the six known avian Crys to have a magnetic sensing function-four radical pair states are formed sequentially by the stepwise transfer of an electron along a chain of four tryptophan residues to the photo-excited flavin. In purified Cry4a from the migratory European robin, the third of these flavin-tryptophan radical pairs is more magnetically sensitive than the fourth, consistent with the smaller separation of the radicals in the former. Here, we explore the idea that these two radical pair states of Cry4a could exist in rapid dynamic equilibrium such that the key magnetic and kinetic properties are weighted averages. Spin dynamics simulations suggest that the third radical pair is largely responsible for magnetic sensing while the fourth may be better placed to initiate magnetic signalling particularly if the terminal tryptophan radical can be reduced by a nearby tyrosine. Such an arrangement could have allowed independent optimization of the essential sensing and signalling functions of the protein. It might also rationalize why avian Cry4a has four tryptophans while Crys from plants have only three.
- Published
- 2021
- Full Text
- View/download PDF
34. Distinguishing between coherent and incoherent signals in excitation-emission spectroscopy.
- Author
-
Lünemann DC, Thomas AR, Xu J, Bartölke R, Mouritsen H, De Sio A, and Lienau C
- Subjects
- Animals, Interferometry, Cryptochromes chemistry, Flavin-Adenine Dinucleotide chemistry, Light, Scattering, Radiation, Songbirds, Spectrum Analysis methods
- Abstract
The separation of incoherent emission signals from coherent light scattering often poses a challenge in (time-resolved) microscopy or excitation-emission spectroscopy. While in spectro-microscopy with narrowband excitation this is commonly overcome using spectral filtering, it is less straightforward when using broadband Fourier-transform techniques that are now becoming commonplace in, e.g., single molecule or ultrafast nonlinear spectroscopy. Here we show that such a separation is readily achieved using highly stable common-path interferometers for both excitation and detection. The approach is demonstrated for suppression of scattering from flavin adenine dinucleotide (FAD) and weakly emissive cryptochrome 4 (Cry4) protein samples. We expect that the approach will be beneficial, e.g., for fluorescence lifetime or Raman-based imaging and spectroscopy of various samples, including single quantum emitters.
- Published
- 2021
- Full Text
- View/download PDF
35. A Guide for Using Flight Simulators to Study the Sensory Basis of Long-Distance Migration in Insects.
- Author
-
Dreyer D, Frost B, Mouritsen H, Lefèvre A, Menz M, and Warrant E
- Abstract
Studying the routes flown by long-distance migratory insects comes with the obvious challenge that the animal's body size and weight is comparably low. This makes it difficult to attach relatively heavy transmitters to these insects in order to monitor their migratory routes (as has been done for instance in several species of migratory birds. However, the rather delicate anatomy of insects can be advantageous for testing their capacity to orient with respect to putative compass cues during indoor experiments under controlled conditions. Almost 20 years ago, Barrie Frost and Henrik Mouritsen developed a flight simulator which enabled them to monitor the heading directions of tethered migratory Monarch butterflies, both indoors and outdoors. The design described in the original paper has been used in many follow-up studies to describe the orientation capacities of mainly diurnal lepidopteran species. Here we present a modification of this flight simulator design that enables studies of nocturnal long-distance migration in moths while allowing controlled magnetic, visual and mechanosensory stimulation. This modified flight simulator has so far been successfully used to study the sensory basis of migration in two European and one Australian migratory noctuid species., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Dreyer, Frost, Mouritsen, Lefèvre, Menz and Warrant.)
- Published
- 2021
- Full Text
- View/download PDF
36. Double Cones and the Diverse Connectivity of Photoreceptors and Bipolar Cells in an Avian Retina.
- Author
-
Günther A, Dedek K, Haverkamp S, Irsen S, Briggman KL, and Mouritsen H
- Subjects
- Animals, Chickens, Microscopy, Electron, Scanning, Retina ultrastructure, Retinal Bipolar Cells ultrastructure, Retinal Cone Photoreceptor Cells ultrastructure, Retinal Rod Photoreceptor Cells ultrastructure, Visual Pathways ultrastructure
- Abstract
Double cones are the most common photoreceptor cell type in most avian retinas, but their precise functions remain a mystery. Among their suggested functions are luminance detection, polarized light detection, and light-dependent, radical pair-based magnetoreception. To better understand the function of double cones, it will be crucial to know how they are connected to the neural network in the avian retina. Here we use serial sectioning, multibeam scanning electron microscopy to investigate double-cone anatomy and connectivity with a particular focus on their contacts to other photoreceptor and bipolar cells in the chicken retina. We found that double cones are highly connected to neighboring double cones and with other photoreceptor cells through telodendria-to-terminal and telodendria-to-telodendria contacts. We also identified 15 bipolar cell types based on their axonal stratifications, photoreceptor contact pattern, soma position, and dendritic and axonal field mosaics. Thirteen of these 15 bipolar cell types contacted at least one or both members of the double cone. All bipolar cells were bistratified or multistratified. We also identified surprising contacts between other cone types and between rods and cones. Our data indicate a much more complex connectivity network in the outer plexiform layer of the avian retina than originally expected. SIGNIFICANCE STATEMENT Like in humans, vision is one of the most important senses for birds. Here, we present the first serial section multibeam scanning electron microscopy dataset from any bird retina. We identified many previously undescribed rod-to-cone and cone-to-cone connections. Surprisingly, of the 15 bipolar cell types we identified, 11 received input from rods and 13 of 15 received at least part of their input from double cones. Therefore, double cones seem to play many different and important roles in avian retinal processing, and the neural network and thus information processing in the outer retina are much more complex than previously expected. These fundamental findings will be very important for several fields of science, including vertebrate vision, avian magnetoreception, and comparative neuroanatomy., (Copyright © 2021 the authors.)
- Published
- 2021
- Full Text
- View/download PDF
37. Magnetic sensitivity of cryptochrome 4 from a migratory songbird.
- Author
-
Xu J, Jarocha LE, Zollitsch T, Konowalczyk M, Henbest KB, Richert S, Golesworthy MJ, Schmidt J, Déjean V, Sowood DJC, Bassetto M, Luo J, Walton JR, Fleming J, Wei Y, Pitcher TL, Moise G, Herrmann M, Yin H, Wu H, Bartölke R, Käsehagen SJ, Horst S, Dautaj G, Murton PDF, Gehrckens AS, Chelliah Y, Takahashi JS, Koch KW, Weber S, Solov'yov IA, Xie C, Mackenzie SR, Timmel CR, Mouritsen H, and Hore PJ
- Subjects
- Animals, Avian Proteins genetics, Chickens, Columbidae, Retina, Animal Migration, Cryptochromes genetics, Magnetic Fields, Songbirds
- Abstract
Night-migratory songbirds are remarkably proficient navigators
1 . Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3 . The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7 . Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.- Published
- 2021
- Full Text
- View/download PDF
38. Navigation by extrapolation of geomagnetic cues in a migratory songbird.
- Author
-
Kishkinev D, Packmor F, Zechmeister T, Winkler HC, Chernetsov N, Mouritsen H, and Holland RA
- Subjects
- Animals, Cues, Animal Migration, Magnetic Fields, Songbirds
- Abstract
Displacement experiments have demonstrated that experienced migratory birds translocated thousands of kilometers away from their migratory corridor can orient toward and ultimately reach their intended destinations.
1 This implies that they are capable of "true navigation," commonly defined2-4 as the ability to return to a known destination after displacement to an unknown location without relying on familiar surroundings, cues that emanate from the destination, or information collected during the outward journey.5-13 In birds, true navigation appears to require previous migratory experience5-7 , 14 , 15 (but see Kishkinev et al.16 and Piersma et al.17 ). It is generally assumed that, to correct for displacements outside the familiar area, birds initially gather information within their year-round distribution range, learn predictable spatial gradients of environmental cues within it, and extrapolate from those to unfamiliar magnitudes-the gradient hypothesis.6 , 9 , 18-22 However, the nature of the cues and evidence for actual extrapolation remain elusive. Geomagnetic cues (inclination, declination, and total intensity) provide predictable spatial gradients across large parts of the globe and could serve for navigation. We tested the orientation of long-distance migrants, Eurasian reed warblers, exposing them to geomagnetic cues of unfamiliar magnitude encountered beyond their natural distribution range. The birds demonstrated re-orientation toward their migratory corridor as if they were translocated to the corresponding location but only when all naturally occurring magnetic cues were presented, not when declination was changed alone. This result represents direct evidence for migratory birds' ability to navigate using geomagnetic cues extrapolated beyond their previous experience., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2021 Elsevier Inc. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
39. Author Correction: Dense sampling of bird diversity increases power of comparative genomics.
- Author
-
Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, Xie D, Chen G, Guo C, Faircloth BC, Petersen B, Wang Z, Zhou Q, Diekhans M, Chen W, Andreu-Sánchez S, Margaryan A, Howard JT, Parent C, Pacheco G, Sinding MS, Puetz L, Cavill E, Ribeiro ÂM, Eckhart L, Fjeldså J, Hosner PA, Brumfield RT, Christidis L, Bertelsen MF, Sicheritz-Ponten T, Tietze DT, Robertson BC, Song G, Borgia G, Claramunt S, Lovette IJ, Cowen SJ, Njoroge P, Dumbacher JP, Ryder OA, Fuchs J, Bunce M, Burt DW, Cracraft J, Meng G, Hackett SJ, Ryan PG, Jønsson KA, Jamieson IG, da Fonseca RR, Braun EL, Houde P, Mirarab S, Suh A, Hansson B, Ponnikas S, Sigeman H, Stervander M, Frandsen PB, van der Zwan H, van der Sluis R, Visser C, Balakrishnan CN, Clark AG, Fitzpatrick JW, Bowman R, Chen N, Cloutier A, Sackton TB, Edwards SV, Foote DJ, Shakya SB, Sheldon FH, Vignal A, Soares AER, Shapiro B, González-Solís J, Ferrer-Obiol J, Rozas J, Riutort M, Tigano A, Friesen V, Dalén L, Urrutia AO, Székely T, Liu Y, Campana MG, Corvelo A, Fleischer RC, Rutherford KM, Gemmell NJ, Dussex N, Mouritsen H, Thiele N, Delmore K, Liedvogel M, Franke A, Hoeppner MP, Krone O, Fudickar AM, Milá B, Ketterson ED, Fidler AE, Friis G, Parody-Merino ÁM, Battley PF, Cox MP, Lima NCB, Prosdocimi F, Parchman TL, Schlinger BA, Loiselle BA, Blake JG, Lim HC, Day LB, Fuxjager MJ, Baldwin MW, Braun MJ, Wirthlin M, Dikow RB, Ryder TB, Camenisch G, Keller LF, DaCosta JM, Hauber ME, Louder MIM, Witt CC, McGuire JA, Mudge J, Megna LC, Carling MD, Wang B, Taylor SA, Del-Rio G, Aleixo A, Vasconcelos ATR, Mello CV, Weir JT, Haussler D, Li Q, Yang H, Wang J, Lei F, Rahbek C, Gilbert MTP, Graves GR, Jarvis ED, Paten B, and Zhang G
- Published
- 2021
- Full Text
- View/download PDF
40. Dense sampling of bird diversity increases power of comparative genomics.
- Author
-
Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, Xie D, Chen G, Guo C, Faircloth BC, Petersen B, Wang Z, Zhou Q, Diekhans M, Chen W, Andreu-Sánchez S, Margaryan A, Howard JT, Parent C, Pacheco G, Sinding MS, Puetz L, Cavill E, Ribeiro ÂM, Eckhart L, Fjeldså J, Hosner PA, Brumfield RT, Christidis L, Bertelsen MF, Sicheritz-Ponten T, Tietze DT, Robertson BC, Song G, Borgia G, Claramunt S, Lovette IJ, Cowen SJ, Njoroge P, Dumbacher JP, Ryder OA, Fuchs J, Bunce M, Burt DW, Cracraft J, Meng G, Hackett SJ, Ryan PG, Jønsson KA, Jamieson IG, da Fonseca RR, Braun EL, Houde P, Mirarab S, Suh A, Hansson B, Ponnikas S, Sigeman H, Stervander M, Frandsen PB, van der Zwan H, van der Sluis R, Visser C, Balakrishnan CN, Clark AG, Fitzpatrick JW, Bowman R, Chen N, Cloutier A, Sackton TB, Edwards SV, Foote DJ, Shakya SB, Sheldon FH, Vignal A, Soares AER, Shapiro B, González-Solís J, Ferrer-Obiol J, Rozas J, Riutort M, Tigano A, Friesen V, Dalén L, Urrutia AO, Székely T, Liu Y, Campana MG, Corvelo A, Fleischer RC, Rutherford KM, Gemmell NJ, Dussex N, Mouritsen H, Thiele N, Delmore K, Liedvogel M, Franke A, Hoeppner MP, Krone O, Fudickar AM, Milá B, Ketterson ED, Fidler AE, Friis G, Parody-Merino ÁM, Battley PF, Cox MP, Lima NCB, Prosdocimi F, Parchman TL, Schlinger BA, Loiselle BA, Blake JG, Lim HC, Day LB, Fuxjager MJ, Baldwin MW, Braun MJ, Wirthlin M, Dikow RB, Ryder TB, Camenisch G, Keller LF, DaCosta JM, Hauber ME, Louder MIM, Witt CC, McGuire JA, Mudge J, Megna LC, Carling MD, Wang B, Taylor SA, Del-Rio G, Aleixo A, Vasconcelos ATR, Mello CV, Weir JT, Haussler D, Li Q, Yang H, Wang J, Lei F, Rahbek C, Gilbert MTP, Graves GR, Jarvis ED, Paten B, and Zhang G
- Subjects
- Animals, Chickens genetics, Conservation of Natural Resources, Datasets as Topic, Finches genetics, Humans, Selection, Genetic genetics, Synteny genetics, Birds classification, Birds genetics, Genome genetics, Genomics methods, Genomics standards, Phylogeny
- Abstract
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity
1-4 . Sparse taxon sampling has previously been proposed to confound phylogenetic inference5 , and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.- Published
- 2020
- Full Text
- View/download PDF
41. A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird.
- Author
-
Einwich A, Dedek K, Seth PK, Laubinger S, and Mouritsen H
- Subjects
- Animals, Orientation, Protein Isoforms, Songbirds physiology, Animal Migration, Cryptochromes metabolism, Retina metabolism, Songbirds metabolism
- Abstract
The primary sensory molecule underlying light-dependent magnetic compass orientation in migratory birds has still not been identified. The cryptochromes are the only known class of vertebrate proteins which could mediate this mechanism in the avian retina. Cryptochrome 4 of the night-migratory songbird the European robin (Erithacus rubecula; erCry4) has several of the properties needed to be the primary magnetoreceptor in the avian eye. Here, we report on the identification of a novel isoform of erCry4, which we named erCry4b. Cry4b includes an additional exon of 29 amino acids compared to the previously described form of Cry4, now called Cry4a. When comparing the retinal circadian mRNA expression pattern of the already known isoform erCry4a and the novel erCry4b isoform, we find that erCry4a is stably expressed throughout day and night, whereas erCry4b shows a diurnal mRNA oscillation. The differential characteristics of the two erCry4 isoforms regarding their 24-h rhythmicity in mRNA expression leads us to suggest that they might have different functions. Based on the 24-h expression pattern, erCry4a remains the more likely cryptochrome to be involved in radical-pair-based magnetoreception, but at the present time, an involvement of erCry4b cannot be excluded.
- Published
- 2020
- Full Text
- View/download PDF
42. Natal imprinting to the Earth's magnetic field in a pelagic seabird.
- Author
-
Wynn J, Padget O, Mouritsen H, Perrins C, and Guilford T
- Subjects
- Animals, Orientation, Spatial physiology, Seasons, Spatial Navigation physiology, Animal Migration physiology, Behavior, Animal physiology, Birds physiology, Earth, Planet, Homing Behavior physiology, Imprinting, Psychological physiology, Magnetic Fields, Sensory Receptor Cells physiology
- Abstract
In migratory animals for whom post-natal care is limited, it is essential that there are inherited mechanisms whereby an individual can navigate-first, to the terminus of their migration, and second, back to a suitable breeding site. In birds, empirical evidence suggests that orientation on first migration is controlled by an inherited navigational vector, a direction and a distance in which to move (the "clock and compass" model) [1-5]. The mechanism and information that underlie the return to the natal breeding site are, however, almost entirely unknown. A potential solution to this problem would be for an animal to learn the values for spatially and temporally stable gradient cues that specifically indicate the location of the natal site [6-16]. One potential cue for latitude is magnetic inclination. Here, we use ringing recoveries made over the last 80 years to investigate whether magnetic inclination might be used as a navigational cue to control the latitude of recruitment in a trans-global migrant, the Manx shearwater (Puffinus puffinus). We find that small changes in inclination between when a bird fledges and when it returns from first migration correlate with probabilistic changes in latitude at recruitment, in doing so quantitatively fulfilling a priori predictions as to the magnitude and direction of latitudinal shift. This, we believe, suggests that (1) natal magnetic inclination is learnt prior to fledging and (2) is used to provide latitudinal information when making the first return trip from the wintering grounds., Competing Interests: Declaration of Interests The authors declare no competing interests., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
43. Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina.
- Author
-
Wu H, Scholten A, Einwich A, Mouritsen H, and Koch KW
- Subjects
- Animals, Cryptochromes genetics, DNA, Complementary genetics, DNA, Complementary metabolism, Immunoblotting, Protein Binding, Protein Interaction Maps, Cryptochromes metabolism, Retina metabolism, Songbirds metabolism, Two-Hybrid System Techniques
- Abstract
Migratory birds can sense the Earth's magnetic field and use it for orientation over thousands of kilometres. A light-dependent radical-pair mechanism associated with the visual system is currently discussed as the underlying mechanism of the magnetic compass sense. The blue light receptor cryptochrome 4 (Cry4) is considered as the most likely primary sensory protein that detects the geomagnetic field. Since the protein interaction partners of Cry4 are completely unknown at present, here, we aim to identify potential candidate interaction partners of Cry4 in the avian retina. We used the yeast-two-hybrid system to screen avian cDNA libraries for possible interaction partners of Cry4 in the European robin. The UAS-GAL yeast two hybrid system was applied to confirm a group of candidate Cry4 interaction partners. Six proteins were found to be particularly promising candidates for interacting with European robin Cry4. The identified genes code for guanine nucleotide-binding protein G(t) subunit alpha-2 (GNAT2), long-wavelength-sensitive opsin (LWS, also called iodopsin), guanine nucleotide-binding protein subunit gamma 10 (GNG10), potassium voltage-gated channel subfamily V member 2 (KCNV2), retinol binding protein 1 (RBP1) and retinal G protein-coupled receptor (RGR). All genes are known to be expressed in vertebrate retinae of different species. We conclude by discussing putative signalling pathways that could connect cryptochrome 4 to one or more of these 6 candidates.
- Published
- 2020
- Full Text
- View/download PDF
44. No evidence for the use of magnetic declination for migratory navigation in two songbird species.
- Author
-
Chernetsov N, Pakhomov A, Davydov A, Cellarius F, and Mouritsen H
- Subjects
- Animals, Magnetic Fields, Magnetics, Orientation, Passeriformes physiology, Physical Phenomena, Scotland, Animal Migration physiology, Songbirds physiology, Spatial Navigation physiology
- Abstract
Determining the East-West position was a classical problem in human sea navigation until accurate clocks were manufactured and sailors were able to measure the difference between local time and a fixed reference to determine longitude. Experienced night-migratory songbirds can correct for East-West physical and virtual magnetic displacements to unknown locations. Migratory birds do not appear to possess a time-different clock sense; therefore, they must solve the longitude problem in a different way. We showed earlier that experienced adult (but not juvenile) Eurasian reed warblers (Acrocephalus scirpaceus) can use magnetic declination (the difference in direction between geographic and magnetic North) to solve this problem when they were virtually displaced from Rybachy on the eastern Baltic coast to Scotland. In this study, we aimed to test how general this effect was. Adult and juvenile European robins (Erithacus rubecula) and adult garden warblers (Sylvia borin) under the same experimental conditions did not respond to this virtual magnetic displacement, suggesting significant variation in how navigational maps are organised in different songbird migrants., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
45. A newly identified trigeminal brain pathway in a night-migratory bird could be dedicated to transmitting magnetic map information.
- Author
-
Kobylkov D, Schwarze S, Michalik B, Winklhofer M, Mouritsen H, and Heyers D
- Subjects
- Animals, Eye, Magnetic Phenomena, Magnetics, Orientation, Trigeminal Nerve, Animal Migration, Brain physiology, Songbirds physiology, Spatial Navigation
- Abstract
Night-migratory songbirds can use geomagnetic information to navigate over thousands of kilometres with great precision. A crucial part of the magnetic 'map' information used by night-migratory songbirds is conveyed via the ophthalmic branches of the trigeminal nerves to the trigeminal brainstem complex, where magnetic-driven neuronal activation has been observed. However, it is not known how this information reaches the forebrain for further processing. Here, we show that the magnetically activated region in the trigeminal brainstem of migratory Eurasian blackcaps ( Sylvia atricapilla ) represents a morphologically distinctive neuronal population with an exclusive and previously undescribed projection to the telencephalic frontal nidopallium. This projection is clearly different from the known trigeminal somatosensory pathway that we also confirmed both by neuronal tracing and by a thorough morphometric analysis of projecting neurons. The new pathway we identified here represents part of a brain circuit that-based on the known nidopallial connectivities in birds-could potentially transmit magnetic 'map' information to key multisensory integration centres in the brain known to be critically involved in spatial memory formation, cognition and/or controlling executive behaviour, such as navigation, in birds.
- Published
- 2020
- Full Text
- View/download PDF
46. Electromagnetic 0.1-100 kHz noise does not disrupt orientation in a night-migrating songbird implying a spin coherence lifetime of less than 10 µs.
- Author
-
Kobylkov D, Wynn J, Winklhofer M, Chetverikova R, Xu J, Hiscock H, Hore PJ, and Mouritsen H
- Subjects
- Animals, Electromagnetic Fields, Orientation physiology, Animal Migration, Circadian Rhythm, Noise, Songbirds, Taxis Response
- Abstract
According to the currently prevailing theory, the magnetic compass sense in night-migrating birds relies on a light-dependent radical-pair-based mechanism. It has been shown that radio waves at megahertz frequencies disrupt magnetic orientation in migratory birds, providing evidence for a quantum-mechanical origin of the magnetic compass. Still, many crucial properties, e.g. the lifetime of the proposed magnetically sensitive radical pair, remain unknown. The current study aims to estimate the spin coherence time of the radical pair, based on the behavioural responses of migratory birds to broadband electromagnetic fields covering the frequency band 0.1-100 kHz. A finding that the birds were unable to use their magnetic compass under these conditions would imply surprisingly long-lived (greater than 10 µs) spin coherence. However, we observed no effect of 0.1-100 kHz radiofrequency (RF) fields on the orientation of night-migratory Eurasian blackcaps ( Sylvia atricapilla ). This suggests that the lifetime of the spin coherence involved in magnetoreception is shorter than the period of the highest frequency RF fields used in this experiment (i.e. approx. 10 µs). This result, in combination with an earlier study showing that 20-450 kHz electromagnetic fields disrupt magnetic compass orientation, suggests that the spin coherence lifetime of the magnetically sensitive radical pair is in the range 2-10 µs.
- Published
- 2019
- Full Text
- View/download PDF
47. Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon.
- Author
-
Zoltowski BD, Chelliah Y, Wickramaratne A, Jarocha L, Karki N, Xu W, Mouritsen H, Hore PJ, Hibbs RE, Green CB, and Takahashi JS
- Subjects
- Amino Acid Sequence, Animal Migration physiology, Animals, Light, Magnetic Fields, Photochemistry methods, Structure-Activity Relationship, Vertebrates metabolism, Columbidae metabolism, Cryptochromes chemistry, Cryptochromes metabolism
- Abstract
Computational and biochemical studies implicate the blue-light sensor cryptochrome (CRY) as an endogenous light-dependent magnetosensor enabling migratory birds to navigate using the Earth's magnetic field. Validation of such a mechanism has been hampered by the absence of structures of vertebrate CRYs that have functional photochemistry. Here we present crystal structures of Columba livia (pigeon) CRY4 that reveal evolutionarily conserved modifications to a sequence of Trp residues (Trp-triad) required for CRY photoreduction. In Cl CRY4, the Trp-triad chain is extended to include a fourth Trp (W369) and a Tyr (Y319) residue at the protein surface that imparts an unusually high quantum yield of photoreduction. These results are consistent with observations of night migratory behavior in animals at low light levels and could have implications for photochemical pathways allowing magnetosensing., Competing Interests: The authors declare no conflict of interest., (Copyright © 2019 the Author(s). Published by PNAS.)
- Published
- 2019
- Full Text
- View/download PDF
48. Magnetic map navigation in a migratory songbird requires trigeminal input.
- Author
-
Pakhomov A, Anashina A, Heyers D, Kobylkov D, Mouritsen H, and Chernetsov N
- Subjects
- Animals, Animal Migration, Magnetic Phenomena, Orientation, Spatial, Songbirds physiology, Trigeminal Nerve physiology
- Abstract
Recently, virtual magnetic displacement experiments have shown that magnetic cues are indeed important for determining position in migratory birds; but which sensory system(s) do they use to detect the magnetic map cues? Here, we show that Eurasian reed warblers need trigeminal input to detect that they have been virtually magnetically displaced. Birds with bilaterally ablated ophthalmic branches of the trigeminal nerves were not able to re-orient towards their conspecific breeding grounds after a virtual magnetic displacement, exactly like they were not able to compensate for a real physical displacement. In contrast, sham-operated reed warblers re-oriented after the virtual displacement, like intact controls did in the past. Our results show that trigeminally mediated sensory information is necessary for the correct function of the reed warblers' magnetic positioning system.
- Published
- 2018
- Full Text
- View/download PDF
49. Lidocaine is a nocebo treatment for trigeminally mediated magnetic orientation in birds.
- Author
-
Engels S, Treiber CD, Salzer MC, Michalik A, Ushakova L, Keays DA, Mouritsen H, and Heyers D
- Subjects
- Animals, Beak anatomy & histology, Beak physiology, Nocebo Effect, Songbirds anatomy & histology, Trigeminal Nerve cytology, Brain Stem cytology, Brain Stem physiology, Lidocaine pharmacology, Magnetic Fields, Orientation drug effects, Songbirds physiology, Trigeminal Nerve physiology
- Abstract
Even though previously described iron-containing structures in the upper beak of pigeons were almost certainly macrophages, not magnetosensitive neurons, behavioural and neurobiological evidence still supports the involvement of the ophthalmic branch of the trigeminal nerve (V1) in magnetoreception. In previous behavioural studies, inactivation of putative V1-associated magnetoreceptors involved either application of the surface anaesthetic lidocaine to the upper beak or sectioning of V1. Here, we compared the effects of lidocaine treatment, V1 ablations and sham ablations on magnetic field-driven neuronal activation in V1-recipient brain regions in European robins. V1 sectioning led to significantly fewer Egr-1-expressing neurons in the trigeminal brainstem than in the sham-ablated birds, whereas lidocaine treatment had no effect on neuronal activation. Furthermore, Prussian blue staining showed that nearly all iron-containing cells in the subepidermal layer of the upper beak are nucleated and are thus not part of the trigeminal nerve, and iron-containing cells appeared in highly variable numbers at inconsistent locations between individual robins and showed no systematic colocalization with a neuronal marker. Our data suggest that lidocaine treatment has been a nocebo to the birds and a placebo for the experimenters. Currently, the nature and location of any V1-associated magnetosensor remains elusive., (© 2018 The Author(s).)
- Published
- 2018
- Full Text
- View/download PDF
50. The Earth's Magnetic Field and Visual Landmarks Steer Migratory Flight Behavior in the Nocturnal Australian Bogong Moth.
- Author
-
Dreyer D, Frost B, Mouritsen H, Günther A, Green K, Whitehouse M, Johnsen S, Heinze S, and Warrant E
- Subjects
- Animal Migration physiology, Animal Migration radiation effects, Animals, Australia, Earth, Planet, Flight, Animal radiation effects, Moths radiation effects, Flight, Animal physiology, Magnetic Fields, Moths physiology, Orientation, Spatial physiology, Orientation, Spatial radiation effects
- Abstract
Like many birds [1], numerous species of nocturnal moths undertake spectacular long-distance migrations at night [2]. Each spring, billions of Bogong moths (Agrotis infusa) escape hot conditions in different regions of southeast Australia by making a highly directed migration of over 1,000 km to a limited number of cool caves in the Australian Alps, historically used for aestivating over the summer [3, 4]. How moths determine the direction of inherited migratory trajectories at night and locate their destination (i.e., navigate) is currently unknown [5-7]. Here we show that Bogong moths can sense the Earth's magnetic field and use it in conjunction with visual landmarks to steer migratory flight behavior. By tethering migrating moths in an outdoor flight simulator [8], we found that their flight direction turned predictably when dominant visual landmarks and a natural Earth-strength magnetic field were turned together, but that the moths became disoriented within a few minutes when these cues were set in conflict. We thus conclude that Bogong moths, like nocturnally migrating birds [9], can use a magnetic sense. Our results represent the first reliable demonstration of the use of the Earth's magnetic field to steer flight behavior in a nocturnal migratory insect., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.