24 results on '"Maksudov F"'
Search Results
2. PB0531 Mechanical Behavior of Clots: Molecular Mechanism of Forced Unfolding of Crosslinked Fibrin Protofibrils
- Author
-
Barsegov, V., primary, Maksudov, F., additional, Nikanshin, A., additional, Protopopova, A., additional, Litvinov, R., additional, and Weisel, J., additional
- Published
- 2023
- Full Text
- View/download PDF
3. OC 09.2 Biomechanics, Energetics, and Structural Basis of Rupture of Fibrin Networks with Varying Density
- Author
-
Ramanujam, R., primary, Maksudov, F., additional, Nagaswami, C., additional, Litvinov, R., additional, Weisel, J., additional, Barsegov, V., additional, and Tutwiler, V., additional
- Published
- 2023
- Full Text
- View/download PDF
4. The genomic formation of South and Central Asia
- Author
-
Narasimhan, V., Patterson, N., Moorjani, P., Lazaridis, I., Mark, L., Mallick, S., Rohland, N., Bernardos, R., Kim, A., Nakatsuka, N., Olalde, I., Coppa, A., Mallory, J., Moiseyev, V., Monge, J., Olivieri, L., Adamski, N., Broomandkhoshbacht, N., Candilio, F., Cheronet, O., Culleton, B., Ferry, M., Fernandes, D., Gamarra, B., Gaudio, D., Hajdinjak, M., Harney, E., Harper, T., Keating, D., Lawson, A., Michel, M., Novak, M., Oppenheimer, J., Rai, N., Sirak, K., Slon, V., Stewardson, K., Zhang, Z., Akhatov, G., Bagashev, A., Baitanayev, B., Bonora, G., Chikisheva, T., Derevianko, A., Dmitry, E., Douka, K., Dubova, N., Epimakhov, A., Freilich, S., Fuller, D., Goryachev, A., Gromov, A., Hanks, B., Judd, M., Kazizov, E., Khokhlov, A., Kitov, E., Kupriyanova, E., Kuznetsov, P., Luiselli, D., Maksudov, F., Meiklejohn, C., Merrett, D., Micheli, R., Mochalov, O., Zahir, M., Mustafakulov, S., Nayak, A., Petrovna, R., Pettner, D., Potts, R., Razhev, D., Sarno, S., Sikhymbaevae, K., Slepchenko, S., Stepanova, N., Svyatko, S., Vasilyev, S., Vidale, M., Voyakin, D., Yermolayeva, A., Zubova, A., Shinde, V., Lalueza-Fox, C., Meyer, M., Anthony, D., Boivin, N., Thangaraj, K., Kennett, D., Frachetti, M., Pinhasi, R., and Reich, D.
- Abstract
The genetic formation of Central and South Asian populations has been unclear because of an absence of ancient DNA. To address this gap, we generated genome-wide data from 362 ancient individuals, including the first from eastern Iran, Turan (Uzbekistan, Turkmenistan, and Tajikistan), Bronze Age Kazakhstan, and South Asia. Our data reveal a complex set of genetic sources that ultimately combined to form the ancestry of South Asians today. We document a southward spread of genetic ancestry from the Eurasian Steppe, correlating with the archaeologically known expansion of pastoralist sites from the Steppe to Turan in the Middle Bronze Age (2300-1500 BCE). These Steppe communities mixed genetically with peoples of the Bactria Margiana Archaeological Complex (BMAC) whom they encountered in Turan (primarily descendants of earlier agriculturalists of Iran), but there is no evidence that the main BMAC population contributed genetically to later South Asians. Instead, Steppe communities integrated farther south throughout the 2nd millennium BCE, and we show that they mixed with a more southern population that we document at multiple sites as outlier individuals exhibiting a distinctive mixture of ancestry related to Iranian agriculturalists and South Asian hunter-gathers. We call this group Indus Periphery because they were found at sites in cultural contact with the Indus Valley Civilization (IVC) and along its northern fringe, and also because they were genetically similar to post-IVC groups in the Swat Valley of Pakistan. By co-analyzing ancient DNA and genomic data from diverse present-day South Asians, we show that Indus Periphery-related people are the single most important source of ancestry in South Asia —} consistent with the idea that the Indus Periphery individuals are providing us with the first direct look at the ancestry of peoples of the IVC {— and we develop a model for the formation of present-day South Asians in terms of the temporally and geographically proximate sources of Indus Periphery-related, Steppe, and local South Asian hunter-gatherer-related ancestry. Our results show how ancestry from the Steppe genetically linked Europe and South Asia in the Bronze Age, and identifies the populations that almost certainly were responsible for spreading Indo-European languages across much of Eurasia.
- Published
- 2018
5. Rupture mechanics of blood clots: Influence of fibrin network structure on the rupture resistance.
- Author
-
Ramanujam RK, Maksudov F, Risman RA, Litvinov RI, Weisel JW, Bassani JL, Barsegov V, Purohit PK, and Tutwiler V
- Abstract
Embolization is a leading cause of mortality, yet we know little about clot rupture mechanics. Fibrin provides the main structural and mechanical stability to blood clots. Previous studies have shown that altering the concentration of coagulation activators (thrombin or tissue factor (TF)) has a significant impact on fibrin structure and viscoelastic properties, but their effects on rupture properties are mostly unknown. Toughness, which corresponds to the ability to resist rupture, is independent of viscoelastic properties. We used varying TF concentrations to alter the structure and toughness of human plasma clots. We performed single-edge notch rupture tests to examine fibrin toughness under a constant strain rate and we assessed viscoelastic mechanics using rheology. We utilized fluorescent confocal and scanning electron microscopy (SEM) to quantify the fibrin network structure under varying TF concentrations. Our results revealed that increased TF concentration resulted in increased number of fibrin fibers with a reduction in network pore size, thinner and shorter fibrin fibers. Increasing TF concentration yielded a maximum toughness at mid-TF concentration, such that fibrin diameter and number of fibers underlie a complex role in influencing the rupture resistance of blood clots, resulting in a nonmonotonic relationship between TF and toughness. A simple mechanical model, built on our findings from our Fluctuating Spring (FS) computational model, adopted to estimate the fracture toughness (critical energy release rate) as a function of TF predicts trends that are in good agreement with experiments. The differences in mechanical responses point to the importance of studying the structure-function relationships of fibrin networks, which may be predictive of the tendency for embolization. STATEMENT OF SIGNIFICANCE: Fibrin, a naturally occurring biomaterial, is the main mechanical and structural scaffold of blood clots that provides the necessary strength and stability to the clot, ensuring effective stemming of bleeding. The rupture of blood clots can result in the blockage of downstream vessels thereby blocking blood flow and oxygen supply. The fibrin network structure has been shown to influence the viscoelastic mechanical properties of clots, but has not been explored for fracture mechanics. Here, we modulate the fibrin network structure by varying the concentration of Tissue Factor (TF). Interestingly, the association between TF concentration and maximum toughness of the clots is non-monotonic. The variations in mechanical responses highlight the importance of studying the structure-function relationships of fibrin networks, as these may predict the tendency for embolization., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. Large-scale medieval urbanism traced by UAV-lidar in highland Central Asia.
- Author
-
Frachetti MD, Berner J, Liu X, Henry ER, Maksudov F, and Ju T
- Subjects
- History, Medieval, Uzbekistan, Architecture history, Altitude, Archaeology instrumentation, Archaeology methods, Cities history, Urbanization history, Unmanned Aerial Devices
- Abstract
Aerial light detection and ranging (lidar) has emerged as a powerful technology for mapping urban archaeological landscapes, especially where dense vegetation obscures site visibility
1,2 . More recently, uncrewed aerial vehicle/drone lidar scanning has markedly improved the resolution of three-dimensional point clouds, allowing for the detection of slight traces of structural features at centimetres of detail across large archaeological sites, a method particularly useful in areas such as mountains, where rapid deposition and erosion irregularly bury and expose archaeological remains3 . Here we present the results of uncrewed aerial vehicle-lidar surveys in Central Asia, conducted at two recently discovered archaeological sites in southeastern Uzbekistan: Tashbulak and Tugunbulak. Situated at around 2,000-2,200 m above sea level, these sites illustrate a newly documented geography of large, high-altitude urban centres positioned along the mountainous crossroads of Asia's medieval Silk Routes (6th-11th century CE (Common Era)4,5 . Although hidden by centuries of surface processes, our pairing of very-high-resolution surface modelling with semiautomated feature detection produces a detailed plan of monumental fortifications and architecture spanning 120 ha at Tugunbulak, thereby demonstrating one of the largest highland urban constellations in premodern Central Asia. Documentation of extensive urban infrastructure and technological production among medieval communities in Central Asia's mountains-a crucial nexus for Silk Road trade networks6 -provides a new perspective on the participation of highland populations in the economic, political and social formation of medieval Eurasia., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2024
- Full Text
- View/download PDF
7. Archaeological and molecular evidence for ancient chickens in Central Asia.
- Author
-
Peters C, Richter KK, Wilkin S, Stark S, Mir-Makhamad B, Fernandes R, Maksudov F, Mirzaakhmedov S, Rahmonov H, Schirmer S, Ashastina K, Begmatov A, Frachetti M, Kurbanov S, Shenkar M, Hermes T, Kidd F, Omelchenko A, Huber B, Boivin N, Wang S, Lurje P, von Baeyer M, Dal Martello R, and Spengler RN 3rd
- Subjects
- Animals, Asia, Archaeology, Chickens genetics, Animals, Domestic
- Abstract
The origins and dispersal of the chicken across the ancient world remains one of the most enigmatic questions regarding Eurasian domesticated animals. The lack of agreement concerning timing and centers of origin is due to issues with morphological identifications, a lack of direct dating, and poor preservation of thin, brittle bird bones. Here we show that chickens were widely raised across southern Central Asia from the fourth century BC through medieval periods, likely dispersing along the ancient Silk Road. We present archaeological and molecular evidence for the raising of chickens for egg production, based on material from 12 different archaeological sites spanning a millennium and a half. These eggshells were recovered in high abundance at all of these sites, suggesting that chickens may have been an important part of the overall diet and that chickens may have lost seasonal egg-laying., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
8. Charge transport in individual short base stacked single-stranded RNA molecules.
- Author
-
Chandra S, Williams A, Maksudov F, Kliuchnikov E, Pattiya Arachchillage KGG, Piscitelli P, Castillo A, Marx KA, Barsegov V, and Artes Vivancos JM
- Subjects
- DNA, Single-Stranded, Molecular Conformation, Models, Molecular, RNA metabolism, DNA chemistry
- Abstract
Charge transport in biomolecules is crucial for many biological and technological applications, including biomolecular electronics devices and biosensors. RNA has become the focus of research because of its importance in biomedicine, but its charge transport properties are not well understood. Here, we use the Scanning Tunneling Microscopy-assisted molecular break junction method to measure the electrical conductance of particular 5-base and 10-base single-stranded (ss) RNA sequences capable of base stacking. These ssRNA sequences show single-molecule conductance values around [Formula: see text] ([Formula: see text]), while equivalent-length ssDNAs result in featureless conductance histograms. Circular dichroism (CD) spectra and MD simulations reveal the existence of extended ssRNA conformations versus folded ssDNA conformations, consistent with their different electrical behaviors. Computational molecular modeling and Machine Learning-assisted interpretation of CD data helped us to disentangle the structural and electronic factors underlying CT, thus explaining the observed electrical behavior differences. RNA with a measurable conductance corresponds to sequences with overall extended base-stacking stabilized conformations characterized by lower HOMO energy levels delocalized over a base-stacking mediating CT pathway. In contrast, DNA and a control RNA sequence without significant base-stacking tend to form closed structures and thus are incapable of efficient CT., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
9. Biomechanics, Energetics, and Structural Basis of Rupture of Fibrin Networks.
- Author
-
Ramanujam RK, Maksudov F, Litvinov RI, Nagaswami C, Weisel JW, Tutwiler V, and Barsegov V
- Subjects
- Humans, Fibrin chemistry, Biomechanical Phenomena, Fibrinogen chemistry, Hemostatics, Thrombosis
- Abstract
Fibrin provides the main structural integrity and mechanical strength to blood clots. Failure of fibrin clots can result in life-threating complications, such as stroke or pulmonary embolism. The dependence of rupture resistance of fibrin networks (uncracked and cracked) on fibrin(ogen) concentrations in the (patho)physiological 1-5 g L
-1 range is explored by performing the ultrastructural studies and theoretical analysis of the experimental stress-strain profiles available from mechanical tensile loading assays. Fibrin fibers in the uncracked network stretched evenly, whereas, in the cracked network, fibers around the crack tip showed greater deformation. Unlike fibrin fibers in cracked networks formed at the lower 1-2.7 g L-1 fibrinogen concentrations, fibers formed at the higher 2.7-5 g L-1 concentrations align and stretch simultaneously. Cracked fibrin networks formed in higher fibrinogen solutions are tougher yet less extensible. Statistical modeling revealed that the characteristic strain for fiber alignment, crack size, and fracture toughness of fibrin networks control their rupture resistance. The results obtained provide a structural and biomechanical basis to quantitatively understand the material properties of blood plasma clots and to illuminate the mechanisms of their rupture., (© 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF
10. Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles.
- Author
-
Maksudov F, Kliuchnikov E, Marx KA, Purohit PK, and Barsegov V
- Subjects
- Stress, Mechanical, Biomechanical Phenomena, Thermodynamics, Materials Testing, Mechanical Phenomena
- Abstract
Biological particles have evolved to possess mechanical characteristics necessary to carry out their functions. We developed a computational approach to "fatigue testing in silico", in which constant-amplitude cyclic loading is applied to a particle to explore its mechanobiology. We used this approach to describe dynamic evolution of nanomaterial properties and low-cycle fatigue in the thin spherical encapsulin shell, thick spherical Cowpea Chlorotic Mottle Virus (CCMV) capsid, and thick cylindrical microtubule (MT) fragment over 20 cycles of deformation. Changing structures and force-deformation curves enabled us to describe their damage-dependent biomechanics (strength, deformability, stiffness), thermodynamics (released and dissipated energies, enthalpy, and entropy) and material properties (toughness). Thick CCMV and MT particles experience material fatigue due to slow recovery and damage accumulation over 3-5 loading cycles; thin encapsulin shells show little fatigue due to rapid remodeling and limited damage. The results obtained challenge the existing paradigm: damage in biological particles is partially reversible owing to particle's partial recovery; fatigue crack may or may not grow with each loading cycle and may heal; and particles adapt to deformation amplitude and frequency to minimize the energy dissipated. Using crack size to quantitate damage is problematic as several cracks might form simultaneously in a particle. Dynamic evolution of strength, deformability, and stiffness, can be predicted by analyzing the cycle number (N) dependent damage, [Formula: see text] , where α is a power law and N
f is fatigue life. Fatigue testing in silico can now be used to explore damage-induced changes in the material properties of other biological particles. STATEMENT OF SIGNIFICANCE: Biological particles possess mechanical characteristics necessary to perform their functions. We developed "fatigue testing in silico" approach, which employes Langevin Dynamics simulations of constant-amplitude cyclic loading of nanoscale biological particles, to explore dynamic evolution of the mechanical, energetic, and material properties of the thin and thick spherical particles of encapsulin and Cowpea Chlorotic Mottle Virus, and the microtubule filament fragment. Our study of damage growth and fatigue development challenge the existing paradigm. Damage in biological particles is partially reversible as fatigue crack might heal with each loading cycle. Particles adapt to deformation amplitude and frequency to minimize energy dissipation. The evolution of strength, deformability, and stiffness, can be accurately predicted by analyzing the damage growth in particle structure., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
11. Therapeutic phosphorodiamidate morpholino oligonucleotides: Physical properties, solution structures, and folding thermodynamics.
- Author
-
Maksudov F, Kliuchnikov E, Pierson D, Ujwal ML, Marx KA, Chanda A, and Barsegov V
- Abstract
Elucidating the structure-function relationships for therapeutic RNA mimicking phosphorodiamidate morpholino oligonucleotides (PMOs) is challenging due to the lack of information about their structures. While PMOs have been approved by the US Food and Drug Administration for treatment of Duchenne muscular dystrophy, no structural information on these unique, charge-neutral, and stable molecules is available. We performed circular dichroism and solution viscosity measurements combined with molecular dynamics simulations and machine learning to resolve solution structures of 22-mer, 25-mer, and 30-mer length PMOs. The PMO conformational dynamics are defined by the competition between non-polar nucleobases and uncharged phosphorodiamidate groups for shielding from solvent exposure. PMO molecules form non-canonical, partially helical, stable folded structures with a small 1.4- to 1.7-nm radius of gyration, low count of three to six base pairs and six to nine base stacks, characterized by -34 to -51 kcal/mol free energy, -57 to -103 kcal/mol enthalpy, and -23 to -53 kcal/mol entropy for folding. The 4.5- to 6.2-cm
3 /g intrinsic viscosity and Huggins constant of 4.5-9.9 are indicative of extended and aggregating systems. The results obtained highlight the importance of the conformational ensemble view of PMO solution structures, thermodynamic stability of their non-canonical structures, and concentration-dependent viscosity properties. These principles form a paradigm to understand the structure-properties-function relationship for therapeutic PMOs to advance the design of new RNA-mimic-based drugs., Competing Interests: D.P. and A.C. are employees of Sarepta Therapeutics Inc. and may own stock/options in the company., (© 2023 The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
12. Paleolithic occupation of arid Central Asia in the Middle Pleistocene.
- Author
-
Finestone EM, Breeze PS, Breitenbach SFM, Drake N, Bergmann L, Maksudov F, Muhammadiyev A, Scott P, Cai Y, Khatsenovich AM, Rybin EP, Nehrke G, Boivin N, and Petraglia M
- Subjects
- Animals, Archaeology, Occupations, Water, Asia, Fossils, Hominidae
- Abstract
Central Asia is positioned at a crossroads linking several zones important to hominin dispersal during the Middle Pleistocene. However, the scarcity of stratified and dated archaeological material and paleoclimate records makes it difficult to understand dispersal and occupation dynamics during this time period, especially in arid zones. Here we compile and analyze paleoclimatic and archaeological data from Pleistocene Central Asia, including examination of a new layer-counted speleothem-based multiproxy record of hydrological changes in southern Uzbekistan at the end of MIS 11. Our findings indicate that Lower Palaeolithic sites in the steppe, semi-arid, and desert zones of Central Asia may have served as key areas for the dispersal of hominins into Eurasia during the Middle Pleistocene. In agreement with previous studies, we find that bifaces occur across these zones at higher latitudes and in lower altitudes relative to the other Paleolithic assemblages. We argue that arid Central Asia would have been intermittently habitable during the Middle Pleistocene when long warm interglacial phases coincided with periods when the Caspian Sea was experiencing consistently high water levels, resulting in greater moisture availability and more temperate conditions in otherwise arid regions. During periodic intervals in the Middle Pleistocene, the local environment of arid Central Asia was likely a favorable habitat for paleolithic hominins and was frequented by Lower Paleolithic toolmakers producing bifaces., Competing Interests: The authors have decades that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
13. Morphotype broadening of the grapevine (Vitis vinifera L.) from Oxus civilization 4000 BP, Central Asia.
- Author
-
Chen G, Zhou X, Khasannov M, Spengler RN, Ma J, Annaev T, Kambarov N, Maksudov F, Wang J, Askarov A, and Li X
- Subjects
- Agriculture, Civilization, Seeds, Uzbekistan, Vitis
- Abstract
The region of Transoxiana underwent an early agricultural-demographic transition leading to the earliest proto-urban centers in Central Asia. The agronomic details of this cultural shift are still poorly studied, especially regarding the role that long-generation perennials, such as grapes, played in the cultivation system. In this paper, we present directly dated remains of grape pips from the early urban centers of Sapalli and Djarkutan, in south Uzbekistan. We also present linear morphometric data, which illustrate a considerable range of variation under cultivation that we divide into four distinct morphotypes according to pip shape. While some of the pips in these two assemblages morphologically fall within the range of wild forms, others more closely resemble modern domesticated populations. Most of the specimens measure along a gradient between the two poles, showing a mixed combination of domesticated and wild features. We also point out that the seeds recovered from the Djarkutan temple were, on average, larger and contained more affinity towards domesticated forms than those from domestic contexts. The potential preference of morphotypes seems to suggest that there were recognized different varieties that local cultivators might aware and possibly propagating asexually., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
14. Single-molecule conductance of double-stranded RNA oligonucleotides.
- Author
-
Chandra S, Gunasinghe Pattiya Arachchillage KG, Kliuchnikov E, Maksudov F, Ayoub S, Barsegov V, and Artés Vivancos JM
- Subjects
- DNA chemistry, Molecular Dynamics Simulation, Nucleic Acid Conformation, RNA chemistry, Oligonucleotides chemistry, RNA, Double-Stranded
- Abstract
RNA oligonucleotides are crucial for a range of biological functions and in many biotechnological applications. Herein, we measured, for the first time, the conductance of individual double-stranded (ds)RNA molecules and compared it with the conductance of single DNA : RNA hybrids. The average conductance values are similar for both biomolecules, but the distribution of conductance values shows an order of magnitude higher variability for dsRNA, indicating higher molecular flexibility of dsRNA. Microsecond Molecular Dynamics simulations explain this difference and provide structural insights into the higher stability of DNA : RNA duplex with atomic level of detail. The rotations of 2'-OH groups of the ribose rings and the bases in RNA strands destabilize the duplex structure by weakening base stacking interactions, affecting charge transport, and making single-molecule conductance of dsRNA more variable (dynamic disorder). The results demonstrate that a powerful combination of state-of-the-art biomolecular electronics techniques and computational approaches can provide valuable insights into biomolecules' biophysics with unprecedented spatial resolution.
- Published
- 2022
- Full Text
- View/download PDF
15. Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves.
- Author
-
Maksudov F, Daraei A, Sesha A, Marx KA, Guthold M, and Barsegov V
- Subjects
- Elastic Modulus, Elasticity, Humans, Thermodynamics, Fibrin, Thrombosis
- Abstract
Structural mechanisms underlying the mechanical properties of fibrin fibers are elusive. We combined tensile testing of uncrosslinked fibrin polymers in vitro and in silico to explore their material properties. The experimental stress (σ) - strain (ε) curves for fibrin fibers are characterized by elastic deformations with a weaker elastic response for ε<160% due to unraveling of αC tethers and straightening of fibrin protofibrils, and a stronger response for ε>160% owing to unfolding of the coiled coils and γ nodules in fibrin monomers. Fiber rupture for strains ε>212% is due to dissociation of the knob-hole bonds and rupture of D:D interfaces. We developed the Fluctuating Bilinear Spring model to interpret the σ-ε profiles in terms of the free energy for protofibril alignment ΔG
0 = 10.1-11.5 kB T, Young's moduli for protofibril alignment Yu = 1.9-3.2 MPa and stretching Ya = 5.7-9.7 MPa, strain scale ε˜≈ 12-40% for fiber rupture, and protofibril cooperativity m= 3.6-8. We applied the model to characterize the fiber strength σcr ≈ 12-13 MPa, deformability εcr ≈ 222%, and rupture toughness U≈ 9 MJ/m3 , and to resolve thermodynamic state functions, 96.9 GJ/mol entropy change for protofibril alignment (at room temperature) and 113.6 GJ/mol enthalpy change for protofibril stretching, which add up to 210.5 GJ/mol free-energy change. Fiber elongation is associated with protofibril dehydration and sliding mechanism to create an ordered protofibril array. Fibrin fibers behave like a hydrogel; protofibril dehydration and water expulsion account for ∼94-98% of the total free-energy changes for fiber elongation and rupture. STATEMENT OF SIGNIFICANCE: Structural mechanisms underlying the mechanical properties of fibrin fibers, major components of blood clots and obstructive thrombi, are elusive. We performed tensile testing of uncrosslinked fibrin polymers in vitro and in silico to explore their material properties. Fluctuating Bilinear Spring theory was developed to interpret the stress-strain profiles in terms of the energy for protofibril alignment, elastic moduli for protofibril alignment and stretching, and strain scale for fiber rupture, and to probe the limits of fiber strength, extensibility and toughness. Fibrin fibers behave like a hydrogel. Fiber elongation is defined by the protofibril dehydration and sliding. Structural rearrangements in water matrix control fiber elasticity. These results contribute to fundamental understanding of blood clot breakage that underlies thrombotic embolization., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
16. Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture.
- Author
-
Tutwiler V, Maksudov F, Litvinov RI, Weisel JW, and Barsegov V
- Subjects
- Biomechanical Phenomena, Elastic Modulus, Humans, Thermodynamics, Fibrin, Thrombosis
- Abstract
Fibrin is the major determinant of the mechanical stability and integrity of blood clots and thrombi. To explore the rupture of blood clots, emulating thrombus breakage, we stretched fibrin gels with single-edge cracks of varying size. Ultrastructural alterations of the fibrin network correlated with three regimes of stress vs. strain profiles: the weakly non-linear regime due to alignment of fibrin fibers; linear regime owing to further alignment and stretching of fibers; and the rupture regime for large deformations reaching the critical strain and stress, at which irreversible breakage of fibers ahead of the crack tip occurs. To interpret the stress-strain curves, we developed a new Fluctuating Spring model, which maps the fibrin alignment at the characteristic strain, network stretching with the Young modulus, and simultaneous cooperative rupture of coupled fibrin fibers into a theoretical framework to obtain the closed-form expressions for the strain-dependent stress profiles. Cracks render network rupture stochastic, and the free energy change for fiber deformation and rupture decreases with the crack length, making network rupture more spontaneous. By contrast, mechanical cooperativity due to the presence of inter-fiber contacts strengthens fibrin networks. The results obtained provide a fundamental understanding of blood clot breakage that underlies thrombotic embolization. STATEMENT OF SIGNIFICANCE: Fibrin, a naturally occurring biomaterial, is the major determinant of mechanical stability and integrity of blood clots and obstructive thrombi. We tested mechanically fibrin gels with single-edge cracks and followed ultrastructural alterations of the fibrin network. Rupture of fibrin gel involves initial alignment and elastic stretching of fibers followed by their eventual rupture for deformations reaching the critical level. To interpret the stress-strain curves, we developed Fluctuating Spring model, which showed that cracks render rupture of fibrin networks more spontaneous; yet, coupled fibrin fibers reinforce cracked fibrin networks. The results obtained provide fundamental understanding of blood clot breakage that underlies thrombotic embolization. Fluctuating Spring model can be applied to other protein networks with cracks and to interpret the stress-strain profiles., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
17. Statistical Learning from Single-Molecule Experiments: Support Vector Machines and Expectation-Maximization Approaches to Understanding Protein Unfolding Data.
- Author
-
Maksudov F, Jones LK, and Barsegov V
- Subjects
- Models, Molecular, Protein Unfolding, Proteins, Motivation, Support Vector Machine
- Abstract
Single-molecule force spectroscopy has become a powerful tool for the exploration of dynamic processes that involve proteins; yet, meaningful interpretation of the experimental data remains challenging. Owing to low signal-to-noise ratio, experimental force-extension spectra contain force signals due to nonspecific interactions, tip or substrate detachment, and protein desorption. Unravelling of complex protein structures results in the unfolding transitions of different types. Here, we test the performance of Support Vector Machines (SVM) and Expectation Maximization (EM) approaches in statistical learning from dynamic force experiments. When the output from molecular modeling in silico (or other studies) is used as a training set, SVM and EM can be applied to understand the unfolding force data. The maximal margin or maximum likelihood classifier can be used to separate experimental test observations into the unfolding transitions of different types, and EM optimization can then be utilized to resolve the statistics of unfolding forces: weights, average forces, and standard deviations. We designed an EM-based approach, which can be directly applied to the experimental data without data classification and division into training and test observations. This approach performs well even when the sample size is small and when the unfolding transitions are characterized by overlapping force ranges.
- Published
- 2021
- Full Text
- View/download PDF
18. Fluctuating nonlinear spring theory: Strength, deformability, and toughness of biological nanoparticles from theoretical reconstruction of force-deformation spectra.
- Author
-
Maksudov F, Kononova O, Llauró A, Ortega-Esteban A, Douglas T, Condezo GN, Martín CS, Marx KA, Wuite GJL, Roos WH, de Pablo PJ, and Barsegov V
- Subjects
- Elastic Modulus, Elasticity, Humans, Nonlinear Dynamics, Mechanical Phenomena, Nanoparticles
- Abstract
We developed the Fluctuating Nonlinear Spring (FNS) model to describe the dynamics of mechanical deformation of biological particles, such as virus capsids. The theory interprets the force-deformation spectra in terms of the "Hertzian stiffness" (non-linear regime of a particle's small-amplitude deformations), elastic constant (large-amplitude elastic deformations), and force range in which the particle's fracture occurs. The FNS theory enables one to quantify the particles' elasticity (Young's moduli for Hertzian and bending deformations), and the limits of their strength (critical forces, fracture toughness) and deformability (critical deformations) as well as the probability distributions of these properties, and to calculate the free energy changes for the particle's Hertzian, elastic, and plastic deformations, and eventual fracture. We applied the FNS theory to describe the protein capsids of bacteriophage P22, Human Adenovirus, and Herpes Simplex virus characterized by deformations before fracture that did not exceed 10-19% of their size. These nanoshells are soft (~1-10-GPa elastic modulus), with low ~50-480-kPa toughness - a regime of material behavior that is not well understood, and with the strength increasing while toughness decreases with their size. The particles' fracture is stochastic, with the average values of critical forces, critical deformations, and fracture toughness comparable with their standard deviations. The FNS theory predicts 0.7-MJ/mol free energy for P22 capsid maturation, and it could be extended to describe uniaxial deformation of cylindrical microtubules and ellipsoidal cellular organelles., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020. Published by Elsevier Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
19. Botulinum Endopeptidase: SAXS Experiments and MD Simulations Reveal Extended Solution Structures That Account for Its Biochemical Properties.
- Author
-
Kumar R, Maksudov F, Kononova O, Marx KA, Barsegov V, and Singh BR
- Subjects
- Endopeptidases, Molecular Dynamics Simulation, Scattering, Small Angle, X-Ray Diffraction, Clostridium botulinum
- Abstract
Development of antidotes against botulism requires understanding of the enzymatically active conformations of Botulinum neurotoxin serotype A (BoNT/A) light chain (LCA). We performed small angle X-ray scattering (SAXS) to characterize the solution structures of truncated light chain (tLCA). The 34-37 Å radius of gyration of tLCA was 1.5-times greater than the averaged 22-23-Å radius from the crystal structures. The bimodal distribution of interatomic distances P ( r ) indicated the two-domain tLCA structure with 129-133 Å size, and Kratky plots indicated the tLCA partial unfolding in the 25-37 °C temperature range. To interpret these data, we employed molecular dynamics simulations and machine learning. Excellent agreement between experimental and theoretical P ( r ) profiles helped to resolve conformational subpopulations of tLCA in solution. Partial unfolding of the C-terminal portion of tLCA (residues 339-425) results in formation of extended conformations with the larger globular domain (residues 2-298) and the smaller unstructured domain (339-425). The catalytic domain, buried 20 Å-deep inside the crystal structure, becomes accessible in extended solution conformations (8-9 Å deep). The C- and N-termini containing different functional sequence motifs are maximally separated in the extended conformations. Our results offer physical insights into the molecular basis of BoNT/A function and stress the importance of reversible unfolding-refolding transitions and hydrophobic interactions.
- Published
- 2020
- Full Text
- View/download PDF
20. The formation of human populations in South and Central Asia.
- Author
-
Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardos R, Mallick S, Lazaridis I, Nakatsuka N, Olalde I, Lipson M, Kim AM, Olivieri LM, Coppa A, Vidale M, Mallory J, Moiseyev V, Kitov E, Monge J, Adamski N, Alex N, Broomandkhoshbacht N, Candilio F, Callan K, Cheronet O, Culleton BJ, Ferry M, Fernandes D, Freilich S, Gamarra B, Gaudio D, Hajdinjak M, Harney É, Harper TK, Keating D, Lawson AM, Mah M, Mandl K, Michel M, Novak M, Oppenheimer J, Rai N, Sirak K, Slon V, Stewardson K, Zalzala F, Zhang Z, Akhatov G, Bagashev AN, Bagnera A, Baitanayev B, Bendezu-Sarmiento J, Bissembaev AA, Bonora GL, Chargynov TT, Chikisheva T, Dashkovskiy PK, Derevianko A, Dobeš M, Douka K, Dubova N, Duisengali MN, Enshin D, Epimakhov A, Fribus AV, Fuller D, Goryachev A, Gromov A, Grushin SP, Hanks B, Judd M, Kazizov E, Khokhlov A, Krygin AP, Kupriyanova E, Kuznetsov P, Luiselli D, Maksudov F, Mamedov AM, Mamirov TB, Meiklejohn C, Merrett DC, Micheli R, Mochalov O, Mustafokulov S, Nayak A, Pettener D, Potts R, Razhev D, Rykun M, Sarno S, Savenkova TM, Sikhymbaeva K, Slepchenko SM, Soltobaev OA, Stepanova N, Svyatko S, Tabaldiev K, Teschler-Nicola M, Tishkin AA, Tkachev VV, Vasilyev S, Velemínský P, Voyakin D, Yermolayeva A, Zahir M, Zubkov VS, Zubova A, Shinde VS, Lalueza-Fox C, Meyer M, Anthony D, Boivin N, Thangaraj K, Kennett DJ, Frachetti M, Pinhasi R, and Reich D
- Subjects
- Asia, Central, Asia, Southeastern, Gene Flow, History, Ancient, Humans, Iran, Sequence Analysis, DNA, Asian People genetics, Farms history, Human Migration history, Population genetics
- Abstract
By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
21. Correction: Arboreal crops on the medieval Silk Road: Archaeobotanical studies at Tashbulak.
- Author
-
Spengler RN, Maksudov F, Bullion E, Merkle A, Hermes T, and Frachetti M
- Abstract
[This corrects the article DOI: 10.1371/journal.pone.0201409.].
- Published
- 2018
- Full Text
- View/download PDF
22. Arboreal crops on the medieval Silk Road: Archaeobotanical studies at Tashbulak.
- Author
-
Spengler RN, Maksudov F, Bullion E, Merkle A, Hermes T, and Frachetti M
- Subjects
- Animals, Animals, Domestic, History, Ancient, Humans, Uzbekistan, Archaeology, Crops, Agricultural history, Fruit history
- Abstract
During the first millennium A.D., Central Asia was marked by broad networks of exchange and interaction, what many historians collectively refer to as the "Silk Road". Much of this contact relied on high-elevation mountain valleys, often linking towns and caravanserais through alpine territories. This cultural exchange is thought to have reached a peak in the late first millennium A.D., and these exchange networks fostered the spread of domesticated plants and animals across Eurasia. However, few systematic studies have investigated the cultivated plants that spread along the trans-Eurasian exchange during this time. New archaeobotanical data from the archaeological site of Tashbulak (800-1100 A.D.) in the mountains of Uzbekistan is shedding some light on what crops were being grown and consumed in Central Asia during the medieval period. The archaeobotanical assemblage contains grains and legumes, as well as a wide variety of fruits and nuts, which were likely cultivated at lower elevations and transported to the site. In addition, a number of arboreal fruits may have been collected from the wild or represent cultivated version of species that once grew in the wild shrubby forests of the foothills of southern Central Asia in prehistory. This study examines the spread of crops, notably arboreal crops, across Eurasia and ties together several data sets in order to add to discussions of what plant cultivation looked like in the central region of the Silk Road., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF
23. Urban and nomadic isotopic niches reveal dietary connectivities along Central Asia's Silk Roads.
- Author
-
Hermes TR, Frachetti MD, Bullion EA, Maksudov F, Mustafokulov S, and Makarewicz CA
- Subjects
- Asia, History, Medieval, Human Migration history, Humans, Nitrogen Isotopes, Agriculture history, Diet history, Food history
- Abstract
The ancient 'Silk Roads' formed a vast network of trade and exchange that facilitated the movement of commodities and agricultural products across medieval Central Asia via settled urban communities and mobile pastoralists. Considering food consumption patterns as an expression of socio-economic interaction, we analyse human remains for carbon and nitrogen isotopes in order to establish dietary intake, then model isotopic niches to characterize dietary diversity and infer connectivity among communities of urbanites and nomadic pastoralists. The combination of low isotopic variation visible within urban groups with isotopic distinction between urban communities irrespective of local environmental conditions strongly suggests localized food production systems provided primary subsistence rather than agricultural goods exchanged along trade routes. Nomadic communities, in contrast, experienced higher dietary diversity reflecting engagements with a wide assortment of foodstuffs typical for mobile communities. These data indicate tightly bound social connectivity in urban centres pointedly funnelled local food products and homogenized dietary intake within settled communities, whereas open and opportunistic systems of food production and circulation were possible through more mobile lifeways.
- Published
- 2018
- Full Text
- View/download PDF
24. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid.
- Author
-
Kononova O, Maksudov F, Marx KA, and Barsegov V
- Abstract
A new computational methodology for the accurate numerical calculation of the Cauchy stress tensor, stress invariants, principal stress components, von Mises and Tresca tensors is developed. The methodology is based on the atomic stress approach which permits the calculation of stress tensors, widely used in continuum mechanics modeling of materials properties, using the output from the MD simulations of discrete atomic and [Formula: see text]-based coarse-grained structural models of biological particles. The methodology mapped into the software package TensorCalculator was successfully applied to the empty cowpea chlorotic mottle virus (CCMV) shell to explore the evolution of mechanical stress in this mechanically-tested specific example of a soft virus capsid. We found an inhomogeneous stress distribution in various portions of the CCMV structure and stress transfer from one portion of the virus structure to another, which also points to the importance of entropic effects, often ignored in finite element analysis and elastic network modeling. We formulate a criterion for elastic deformation using the first principal stress components. Furthermore, we show that von Mises and Tresca stress tensors can be used to predict the onset of a viral capsid's mechanical failure, which leads to total structural collapse. TensorCalculator can be used to study stress evolution and dynamics of defects in viral capsids and other large-size protein assemblies.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.