6 results on '"Magnuson SR"'
Search Results
2. GNE-371, a Potent and Selective Chemical Probe for the Second Bromodomains of Human Transcription-Initiation-Factor TFIID Subunit 1 and Transcription-Initiation-Factor TFIID Subunit 1-like.
- Author
-
Wang S, Tsui V, Crawford TD, Audia JE, Burdick DJ, Beresini MH, Côté A, Cummings R, Duplessis M, Flynn EM, Hewitt MC, Huang HR, Jayaram H, Jiang Y, Joshi S, Murray J, Nasveschuk CG, Pardo E, Poy F, Romero FA, Tang Y, Taylor AM, Wang J, Xu Z, Zawadzke LE, Zhu X, Albrecht BK, Magnuson SR, Bellon S, and Cochran AG
- Subjects
- Humans, Models, Molecular, Protein Conformation, Protein Domains, Benzimidazoles metabolism, Drug Design, Molecular Probes metabolism, Transcription Factor TFIID chemistry, Transcription Factor TFIID metabolism
- Abstract
The biological functions of the dual bromodomains of human transcription-initiation-factor TFIID subunit 1 (TAF1(1,2)) remain unknown, although TAF1 has been identified as a potential target for oncology research. Here, we describe the discovery of a potent and selective in vitro tool compound for TAF1(2), starting from a previously reported lead. A cocrystal structure of lead compound 2 bound to TAF1(2) enabled structure-based design and structure-activity-relationship studies that ultimately led to our in vitro tool compound, 27 (GNE-371). Compound 27 binds TAF1(2) with an IC
50 of 10 nM while maintaining excellent selectivity over other bromodomain-family members. Compound 27 is also active in a cellular-TAF1(2) target-engagement assay (IC50 = 38 nM) and exhibits antiproliferative synergy with the BET inhibitor JQ1, suggesting engagement of endogenous TAF1 by 27 and further supporting the use of 27 in mechanistic and target-validation studies.- Published
- 2018
- Full Text
- View/download PDF
3. Inhibition of bromodomain-containing protein 9 for the prevention of epigenetically-defined drug resistance.
- Author
-
Crawford TD, Vartanian S, Côté A, Bellon S, Duplessis M, Flynn EM, Hewitt M, Huang HR, Kiefer JR, Murray J, Nasveschuk CG, Pardo E, Romero FA, Sandy P, Tang Y, Taylor AM, Tsui V, Wang J, Wang S, Zawadzke L, Albrecht BK, Magnuson SR, Cochran AG, and Stokoe D
- Subjects
- Aldehyde Dehydrogenase genetics, Aldehyde Dehydrogenase 1 Family, Cell Line, Tumor, Drug Design, Drug Resistance, Neoplasm drug effects, Humans, Molecular Docking Simulation, Pyridones chemistry, Pyridones pharmacology, Retinal Dehydrogenase, Transcription Factors metabolism, Drug Resistance drug effects, Epigenesis, Genetic drug effects, Small Molecule Libraries chemistry, Small Molecule Libraries pharmacology, Transcription Factors antagonists & inhibitors
- Abstract
Bromodomain-containing protein 9 (BRD9), an epigenetic "reader" of acetylated lysines on post-translationally modified histone proteins, is upregulated in multiple cancer cell lines. To assess the functional role of BRD9 in cancer cell lines, we identified a small-molecule inhibitor of the BRD9 bromodomain. Starting from a pyrrolopyridone lead, we used structure-based drug design to identify a potent and highly selective in vitro tool compound 11, (GNE-375). While this compound showed minimal effects in cell viability or gene expression assays, it showed remarkable potency in preventing the emergence of a drug tolerant population in EGFR mutant PC9 cells treated with EGFR inhibitors. Such tolerance has been linked to an altered epigenetic state, and 11 decreased BRD9 binding to chromatin, and this was associated with decreased expression of ALDH1A1, a gene previously shown to be important in drug tolerance. BRD9 inhibitors may therefore show utility in preventing epigenetically-defined drug resistance., (Copyright © 2017 Elsevier Ltd. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
4. GNE-886: A Potent and Selective Inhibitor of the Cat Eye Syndrome Chromosome Region Candidate 2 Bromodomain (CECR2).
- Author
-
Crawford TD, Audia JE, Bellon S, Burdick DJ, Bommi-Reddy A, Côté A, Cummings RT, Duplessis M, Flynn EM, Hewitt M, Huang HR, Jayaram H, Jiang Y, Joshi S, Kiefer JR, Murray J, Nasveschuk CG, Neiss A, Pardo E, Romero FA, Sandy P, Sims RJ 3rd, Tang Y, Taylor AM, Tsui V, Wang J, Wang S, Wang Y, Xu Z, Zawadzke L, Zhu X, Albrecht BK, Magnuson SR, and Cochran AG
- Abstract
The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound.
- Published
- 2017
- Full Text
- View/download PDF
5. Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition.
- Author
-
Ghosh S, Taylor A, Chin M, Huang HR, Conery AR, Mertz JA, Salmeron A, Dakle PJ, Mele D, Cote A, Jayaram H, Setser JW, Poy F, Hatzivassiliou G, DeAlmeida-Nagata D, Sandy P, Hatton C, Romero FA, Chiang E, Reimer T, Crawford T, Pardo E, Watson VG, Tsui V, Cochran AG, Zawadzke L, Harmange JC, Audia JE, Bryant BM, Cummings RT, Magnuson SR, Grogan JL, Bellon SF, Albrecht BK, Sims RJ 3rd, and Lora JM
- Subjects
- Acetylation drug effects, CREB-Binding Protein chemistry, CREB-Binding Protein metabolism, Cell Differentiation drug effects, Cell Line, Cells, Cultured, E1A-Associated p300 Protein chemistry, E1A-Associated p300 Protein metabolism, Forkhead Transcription Factors metabolism, Histones metabolism, Humans, Molecular Docking Simulation, Protein Structure, Tertiary drug effects, T-Lymphocytes, Regulatory cytology, T-Lymphocytes, Regulatory metabolism, Transcriptome drug effects, CREB-Binding Protein antagonists & inhibitors, E1A-Associated p300 Protein antagonists & inhibitors, Small Molecule Libraries chemistry, Small Molecule Libraries pharmacology, T-Lymphocytes, Regulatory drug effects
- Abstract
Covalent modification of histones is a fundamental mechanism of regulated gene expression in eukaryotes, and interpretation of histone modifications is an essential feature of epigenetic control. Bromodomains are specialized binding modules that interact with acetylated histones, linking chromatin recognition to gene transcription. Because of their ability to function in a domain-specific fashion, selective disruption of bromodomain:acetylated histone interactions with chemical probes serves as a powerful means for understanding biological processes regulated by these chromatin adaptors. Here we describe the discovery and characterization of potent and selective small molecule inhibitors for the bromodomains of CREBBP/EP300 that engage their target in cellular assays. We use these tools to demonstrate a critical role for CREBBP/EP300 bromodomains in regulatory T cell biology. Because regulatory T cell recruitment to tumors is a major mechanism of immune evasion by cancer cells, our data highlight the importance of CREBBP/EP300 bromodomain inhibition as a novel, small molecule-based approach for cancer immunotherapy., (© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Published
- 2016
- Full Text
- View/download PDF
6. Diving into the Water: Inducible Binding Conformations for BRD4, TAF1(2), BRD9, and CECR2 Bromodomains.
- Author
-
Crawford TD, Tsui V, Flynn EM, Wang S, Taylor AM, Côté A, Audia JE, Beresini MH, Burdick DJ, Cummings R, Dakin LA, Duplessis M, Good AC, Hewitt MC, Huang HR, Jayaram H, Kiefer JR, Jiang Y, Murray J, Nasveschuk CG, Pardo E, Poy F, Romero FA, Tang Y, Wang J, Xu Z, Zawadzke LE, Zhu X, Albrecht BK, Magnuson SR, Bellon S, and Cochran AG
- Subjects
- Binding Sites drug effects, Cell Cycle Proteins, Dose-Response Relationship, Drug, Fluorescence Resonance Energy Transfer, Fluorometry, Histone Acetyltransferases metabolism, Humans, Ligands, Models, Molecular, Molecular Conformation, Nuclear Proteins metabolism, Pyridones chemical synthesis, Pyridones chemistry, Pyrroles chemical synthesis, Pyrroles chemistry, Structure-Activity Relationship, TATA-Binding Protein Associated Factors metabolism, Transcription Factor TFIID metabolism, Transcription Factors metabolism, Histone Acetyltransferases antagonists & inhibitors, Nuclear Proteins antagonists & inhibitors, Pyridones pharmacology, Pyrroles pharmacology, TATA-Binding Protein Associated Factors antagonists & inhibitors, Transcription Factor TFIID antagonists & inhibitors, Transcription Factors antagonists & inhibitors, Water chemistry
- Abstract
The biological role played by non-BET bromodomains remains poorly understood, and it is therefore imperative to identify potent and highly selective inhibitors to effectively explore the biology of individual bromodomain proteins. A ligand-efficient nonselective bromodomain inhibitor was identified from a 6-methyl pyrrolopyridone fragment. Small hydrophobic substituents replacing the N-methyl group were designed directing toward the conserved bromodomain water pocket, and two distinct binding conformations were then observed. The substituents either directly displaced and rearranged the conserved solvent network, as in BRD4(1) and TAF1(2), or induced a narrow hydrophobic channel adjacent to the lipophilic shelf, as in BRD9 and CECR2. The preference of distinct substituents for individual bromodomains provided selectivity handles useful for future lead optimization efforts for selective BRD9, CECR2, and TAF1(2) inhibitors.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.