1. Stationary Distribution Analysis of a Queueing Model with Local Choice
- Author
-
Dester, Plinio, Fricker, Christine, Mohamed, Hanene, Networks, Algorithms and Probabilities (RAP2), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Dynamics of Geometric Networks (DYOGENE), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), Modélisation aléatoire de Paris X (MODAL'X), Université Paris Nanterre (UPN), labex MME-DII, J. A. Fill, M. D. Ward, ANR-11-LABX-0023,MME-DII,Modèles Mathématiques et Economiques de la Dynamique, de l'Incertitude et des Interactions(2011), Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Département d'informatique - ENS Paris (DI-ENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Balance equations ,Stationary analysis ,0303 health sciences ,2012 ACM Subject Classification Mathematics of computing → Stochastic processes Keywords and phrases queueing model ,000 Computer science, knowledge, general works ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Local choice ,Computer Science::Performance ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,03 medical and health sciences ,Computer Science ,Computer Science::Networking and Internet Architecture ,Power series expansion ,Queueing model ,0210 nano-technology ,030304 developmental biology - Abstract
The paper deals with load balancing between one-server queues on a circle by a local choice policy. Each one-server queue has a Poissonian arrival of customers. When a customer arrives at a queue, he joins the least loaded queue between this queue and the next one, ties solved at random. Service times have exponential distribution. The system is stable if the arrival-to-service rate ratio called load is less than one. When the load tends to zero, we derive the first terms of the expansion in this parameter for the stationary probabilities that a queue has 0 to 3 customers. We investigate the error, comparing these expansion results to numerical values obtained by simulations. Then we provide the asymptotics, as the load tends to zero, for the stationary probabilities of the queue length, for a fixed number of queues. It quantifies the difference between policies with this local choice, no choice and the choice between two queues chosen at random.
- Published
- 2018
- Full Text
- View/download PDF