213 results on '"Liermann, H. P."'
Search Results
2. FeOOH instability at the lower mantle conditions
- Author
-
Koemets, E., Fedotenko, T., Khandarkhaeva, S., Bykov, M., Bykova, E., Thielmann, M., Chariton, S., Aprilis, G., Koemets, I., Liermann, H. -P., Hanfland, M., Ohtani, E., Dubrovinskaia, N., McCammon, C., and Dubrovinsky, L.
- Subjects
Physics - Geophysics - Abstract
Goethite, {\alpha}-FeOOH, is a major component among oxidized iron species, called rust, which formed as a product of metabolism of anoxygenic prokaryotes (1, 2) inhabiting the Earth from about 3.8 billion years (Gy) ago until the Great Oxidation Event (GOE) of about 2.5 Gy ago. The rust was buried on the ocean floor (1, 2) and had to submerge into the Earth mantle with subducting slabs due to the plate tectonics started about 2.8 Gy ago (3). The fate and the geological role of the rust at the lower mantle high-pressure and high-temperature(HPHT) conditions is unknown. We studied the behavior of goethite up to 82(2) GPa and 2300(100) K using in situ synchrotron single-crystal X-ray diffraction. At these conditions, corresponding to the coldest slabs at the depth of about 1000 km, {\alpha}-FeOOH decomposes to various iron oxides (Fe2O3, Fe5O7, Fe7O10, Fe6.32O9) and an oxygen-rich fluid. Our results suggest that recycling of the rust in the Earth mantle could contribute to oxygen release to the atmosphere and explain the sporadic increase of the oxygen level before the GOE linked to the formation of Large Igneous Provinces(4).
- Published
- 2019
3. Revealing the complex nature of bonding in binary high-pressure compound FeO$_2$
- Author
-
Koemets, E., Leonov, I., Bykov, M., Bykova, E., Chariton, S., Aprilis, G., Fedotenko, T., Clément, S., Rouquette, J., Haines, J., Cerantola, V., Glazyrin, K., McCammon, C., Prakapenka, V. B., Hanfland, M., Liermann, H. -P., Svitlyk, V., Torchio, R., Rosa, A. D., Irifune, T., Ponomareva, A. V., Abrikosov, I. A., Dubrovinskaia, N., and Dubrovinsky, L.
- Subjects
Physics - Geophysics - Abstract
Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides resulting in numerous compounds forming homologous series $n$FeO$\cdot m$Fe$_2$O$_3$ and the appearance of FeO$_2$. Here, based on the results of \emph{in situ} single-crystal X-ray diffraction, M\"ossbauer spectroscopy, X-ray absorption spectroscopy, and DFT+dynamical mean-field theory calculations we demonstrate that iron in high pressure cubic FeO$_2$ and isostructural FeO$_2$H$_{0.5}$ is ferric (Fe$^{3+}$), and oxygen has a formal valence less than two. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.
- Published
- 2019
- Full Text
- View/download PDF
4. Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard x-ray irradiation
- Author
-
Meza-Galvez, J., Gomez-Perez, N., Marshall, A., Coleman, A. L., Appel, K., Liermann, H. P., McMahon, M. I., Konopkova, Z., and McWilliams, R. S.
- Subjects
Condensed Matter - Other Condensed Matter ,Condensed Matter - Materials Science ,Physics - Plasma Physics - Abstract
In the laboratory study of extreme conditions of temperature and density, the exposure of matter to high intensity radiation sources has been of central importance. Here we interrogate the performance of multi-layered targets in experiments involving high intensity, hard x-ray irradiation, motivated by the advent of extremely high brightness hard x-ray sources, such as free electron lasers and 4th-generation synchrotron facilities. Intense hard x-ray beams can deliver significant energy in targets having thick x-ray transparent layers (tampers) around samples of interest, for the study of novel states of matter and materials' dynamics. Heated-state lifetimes in such targets can approach the microsecond level, regardless of radiation pulse duration, enabling the exploration of conditions of local thermal and thermodynamic equilibrium at extreme temperature in solid density matter. The thermal and mechanical response of such thick layered targets following x-ray heating, including hydrodynamic relaxation and heat flow on picosecond to millisecond timescales, is modelled using radiation hydrocode simulation, finite element analysis, and thermodynamic calculations. Assessing the potential for target survival over one or more exposures, and resistance to damage arising from heating and resulting mechanical stresses, this study doubles as an investigation into the performance of diamond-anvil high pressure cells under high x-ray fluences. Long used in conjunction with synchrotron x-ray radiation and high power optical lasers, the strong confinement afforded by such cells suggests novel applications at emerging high intensity x-ray facilities and new routes to studying thermodynamic equilibrium states of warm, very dense matter.
- Published
- 2018
- Full Text
- View/download PDF
5. Weak cubic CaSiO3 perovskite in the Earth’s mantle
- Author
-
Immoor, J., Miyagi, L., Liermann, H.-P., Speziale, S., Schulze, K., Buchen, J., Kurnosov, A., and Marquardt, H.
- Published
- 2022
- Full Text
- View/download PDF
6. Magnetic field screening in hydrogen-rich high-temperature superconductors
- Author
-
Minkov, V. S., Bud’ko, S. L., Balakirev, F. F., Prakapenka, V. B., Chariton, S., Husband, R. J., Liermann, H. P., and Eremets, M. I.
- Published
- 2022
- Full Text
- View/download PDF
7. Phase transition kinetics of superionic H2O ice phases revealed by Megahertz X-ray free-electron laser-heating experiments.
- Author
-
Husband, R. J., Liermann, H. P., McHardy, J. D., McWilliams, R. S., Goncharov, A. F., Prakapenka, V. B., Edmund, E., Chariton, S., Konôpková, Z., Strohm, C., Sanchez-Valle, C., Frost, M., Andriambariarijaona, L., Appel, K., Baehtz, C., Ball, O. B., Briggs, R., Buchen, J., Cerantola, V., and Choi, J.
- Subjects
PHASE transitions ,FACE centered cubic structure ,ICE sheets ,LASER pulses ,HIGH temperatures ,FREE electron lasers ,FEMTOSECOND pulses - Abstract
H
2 O transforms to two forms of superionic (SI) ice at high pressures and temperatures, which contain highly mobile protons within a solid oxygen sublattice. Yet the stability field of both phases remains debated. Here, we present the results of an ultrafast X-ray heating study utilizing MHz pulse trains produced by the European X-ray Free Electron Laser to create high temperature states of H2 O, which were probed using X-ray diffraction during dynamic cooling. We confirm an isostructural transition during heating in the 26-69 GPa range, consistent with the formation of SI-bcc. In contrast to prior work, SI-fcc was observed exclusively above ~50 GPa, despite evidence of melting at lower pressures. The absence of SI-fcc in lower pressure runs is attributed to short heating timescales and the pressure-temperature path induced by the pump-probe heating scheme in which H2 O was heated above its melting temperature before the observation of quenched crystalline states, based on the earlier theoretical prediction that SI-bcc nucleates more readily from the fluid than SI-fcc. Our results may have implications for the stability of SI phases in ice-rich planets, for example during dynamic freezing, where the preferential crystallization of SI-bcc may result in distinct physical properties across mantle ice layers. The authors perform heating experiments using femtosecond X-ray free electron laser pulses to explore the phase stability of superionic H2 O. The absence of a face-centered cubic phase below 50 GPa, where superionic ice forms from the melt, is attributed to the short heating time and may help understanding the stability of superionic phases in ice-rich planets. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
8. Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European x-ray free electron laser: Quantitative structural analysis of liquid Sn
- Author
-
Gorman, M. G., primary, McGonegle, D., additional, Smith, R. F., additional, Singh, S., additional, Jenkins, T., additional, McWilliams, R. S., additional, Albertazzi, B., additional, Ali, S. J., additional, Antonelli, L., additional, Armstrong, M. R., additional, Baehtz, C., additional, Ball, O. B., additional, Banerjee, S., additional, Belonoshko, A. B., additional, Benuzzi-Mounaix, A., additional, Bolme, C. A., additional, Bouffetier, V., additional, Briggs, R., additional, Buakor, K., additional, Butcher, T., additional, Di Dio Cafiso, S., additional, Cerantola, V., additional, Chantel, J., additional, Di Cicco, A., additional, Clarke, S., additional, Coleman, A. L., additional, Collier, J., additional, Collins, G. W., additional, Comley, A. J., additional, Coppari, F., additional, Cowan, T. E., additional, Cristoforetti, G., additional, Cynn, H., additional, Descamps, A., additional, Dorchies, F., additional, Duff, M. J., additional, Dwivedi, A., additional, Edwards, C., additional, Eggert, J. H., additional, Errandonea, D., additional, Fiquet, G., additional, Galtier, E., additional, Laso Garcia, A., additional, Ginestet, H., additional, Gizzi, L., additional, Gleason, A., additional, Goede, S., additional, Gonzalez, J. M., additional, Harmand, M., additional, Hartley, N. J., additional, Heighway, P. G., additional, Hernandez-Gomez, C., additional, Higginbotham, A., additional, Höppner, H., additional, Husband, R. J., additional, Hutchinson, T. M., additional, Hwang, H., additional, Lazicki, A. E., additional, Keen, D. A., additional, Kim, J., additional, Koester, P., additional, Konopkova, Z., additional, Kraus, D., additional, Krygier, A., additional, Labate, L., additional, Lee, Y., additional, Liermann, H.-P., additional, Mason, P., additional, Masruri, M., additional, Massani, B., additional, McBride, E. E., additional, McGuire, C., additional, McHardy, J. D., additional, Merkel, S., additional, Morard, G., additional, Nagler, B., additional, Nakatsutsumi, M., additional, Nguyen-Cong, K., additional, Norton, A.-M., additional, Oleynik, I. I., additional, Otzen, C., additional, Ozaki, N., additional, Pandolfi, S., additional, Peake, D. J., additional, Pelka, A., additional, Pereira, K. A., additional, Phillips, J. P., additional, Prescher, C., additional, Preston, T. R., additional, Randolph, L., additional, Ranjan, D., additional, Ravasio, A., additional, Redmer, R., additional, Rips, J., additional, Santamaria-Perez, D., additional, Savage, D. J., additional, Schoelmerich, M., additional, Schwinkendorf, J.-P., additional, Smith, J., additional, Sollier, A., additional, Spear, J., additional, Spindloe, C., additional, Stevenson, M., additional, Strohm, C., additional, Suer, T.-A., additional, Tang, M., additional, Toncian, M., additional, Toncian, T., additional, Tracy, S. J., additional, Trapananti, A., additional, Tschentscher, T., additional, Tyldesley, M., additional, Vennari, C. E., additional, Vinci, T., additional, Vogel, S. C., additional, Volz, T. J., additional, Vorberger, J., additional, Walsh, J. P. S., additional, Wark, J. S., additional, Willman, J. T., additional, Wollenweber, L., additional, Zastrau, U., additional, Brambrink, E., additional, Appel, K., additional, and McMahon, M. I., additional
- Published
- 2024
- Full Text
- View/download PDF
9. New dynamic diamond anvil cell for time-resolved radial x-ray diffraction
- Author
-
Huston, L. Q., primary, Miyagi, L., additional, Husband, R. J., additional, Glazyrin, K., additional, Kiessner, C., additional, Wendt, M., additional, Liermann, H. P., additional, and Sturtevant, B. T., additional
- Published
- 2024
- Full Text
- View/download PDF
10. Shock compression experiments using the DiPOLE 100-X laser on the high energy density instrument at the European x-ray free electron laser: Quantitative structural analysis of liquid Sn
- Author
-
Gorman, M, Mcgonegle, D, Smith, R, Singh, S, Jenkins, T, Mcwilliams, R, Albertazzi, B, Ali, S, Antonelli, L, Armstrong, M, Baehtz, C, Ball, O, Banerjee, S, Belonoshko, A, Benuzzi-Mounaix, A, Bolme, C, Bouffetier, V, Briggs, R, Buakor, K, Butcher, T, Di Dio Cafiso, S, Cerantola, V, Chantel, J, Di Cicco, A, Clarke, S, Coleman, A, Collier, J, Collins, G, Comley, A, Coppari, F, Cowan, T, Cristoforetti, G, Cynn, H, Descamps, A, Dorchies, F, Duff, M, Dwivedi, A, Edwards, C, Eggert, J, Errandonea, D, Fiquet, G, Galtier, E, Laso Garcia, A, Ginestet, H, Gizzi, L, Gleason, A, Goede, S, Gonzalez, J, Harmand, M, Hartley, N, Heighway, P, Hernandez-Gomez, C, Higginbotham, A, Höppner, H, Husband, R, Hutchinson, T, Hwang, H, Lazicki, A, Keen, D, Kim, J, Koester, P, Konopkova, Z, Kraus, D, Krygier, A, Labate, L, Lee, Y, Liermann, H, Mason, P, Masruri, M, Massani, B, Mcbride, E, Mcguire, C, Mchardy, J, Merkel, S, Morard, G, Nagler, B, Nakatsutsumi, M, Nguyen-Cong, K, Norton, A, Oleynik, I, Otzen, C, Ozaki, N, Pandolfi, S, Peake, D, Pelka, A, Pereira, K, Phillips, J, Prescher, C, Preston, T, Randolph, L, Ranjan, D, Ravasio, A, Redmer, R, Rips, J, Santamaria-Perez, D, Savage, D, Schoelmerich, M, Schwinkendorf, J, Smith, J, Sollier, A, Spear, J, Spindloe, C, Stevenson, M, Strohm, C, Suer, T, Tang, M, Toncian, M, Toncian, T, Tracy, S, Trapananti, A, Tschentscher, T, Tyldesley, M, Vennari, C, Vinci, T, Vogel, S, Volz, T, Vorberger, J, Walsh, J, Wark, J, Willman, J, Wollenweber, L, Zastrau, U, Brambrink, E, Appel, K, Mcmahon, M, Gorman, M. G., McGonegle, D., Smith, R. F., Singh, S., Jenkins, T., McWilliams, R. S., Albertazzi, B., Ali, S. J., Antonelli, L., Armstrong, M. R., Baehtz, C., Ball, O. B., Banerjee, S., Belonoshko, A. B., Benuzzi-Mounaix, A., Bolme, C. A., Bouffetier, V., Briggs, R., Buakor, K., Butcher, T., Di Dio Cafiso, S., Cerantola, V., Chantel, J., Di Cicco, A., Clarke, S., Coleman, A. L., Collier, J., Collins, G. W., Comley, A. J., Coppari, F., Cowan, T. E., Cristoforetti, G., Cynn, H., Descamps, A., Dorchies, F., Duff, M. J., Dwivedi, A., Edwards, C., Eggert, J. H., Errandonea, D., Fiquet, G., Galtier, E., Laso Garcia, A., Ginestet, H., Gizzi, L., Gleason, A., Goede, S., Gonzalez, J. M., Harmand, M., Hartley, N. J., Heighway, P. G., Hernandez-Gomez, C., Higginbotham, A., Höppner, H., Husband, R. J., Hutchinson, T. M., Hwang, H., Lazicki, A. E., Keen, D. A., Kim, J., Koester, P., Konopkova, Z., Kraus, D., Krygier, A., Labate, L., Lee, Y., Liermann, H. -P., Mason, P., Masruri, M., Massani, B., McBride, E. E., McGuire, C., McHardy, J. D., Merkel, S., Morard, G., Nagler, B., Nakatsutsumi, M., Nguyen-Cong, K., Norton, A. -M., Oleynik, I. I., Otzen, C., Ozaki, N., Pandolfi, S., Peake, D. J., Pelka, A., Pereira, K. A., Phillips, J. P., Prescher, C., Preston, T. R., Randolph, L., Ranjan, D., Ravasio, A., Redmer, R., Rips, J., Santamaria-Perez, D., Savage, D. J., Schoelmerich, M., Schwinkendorf, J. -P., Smith, J., Sollier, A., Spear, J., Spindloe, C., Stevenson, M., Strohm, C., Suer, T. -A., Tang, M., Toncian, M., Toncian, T., Tracy, S. J., Trapananti, A., Tschentscher, T., Tyldesley, M., Vennari, C. E., Vinci, T., Vogel, S. C., Volz, T. J., Vorberger, J., Walsh, J. P. S., Wark, J. S., Willman, J. T., Wollenweber, L., Zastrau, U., Brambrink, E., Appel, K., McMahon, M. I., Gorman, M, Mcgonegle, D, Smith, R, Singh, S, Jenkins, T, Mcwilliams, R, Albertazzi, B, Ali, S, Antonelli, L, Armstrong, M, Baehtz, C, Ball, O, Banerjee, S, Belonoshko, A, Benuzzi-Mounaix, A, Bolme, C, Bouffetier, V, Briggs, R, Buakor, K, Butcher, T, Di Dio Cafiso, S, Cerantola, V, Chantel, J, Di Cicco, A, Clarke, S, Coleman, A, Collier, J, Collins, G, Comley, A, Coppari, F, Cowan, T, Cristoforetti, G, Cynn, H, Descamps, A, Dorchies, F, Duff, M, Dwivedi, A, Edwards, C, Eggert, J, Errandonea, D, Fiquet, G, Galtier, E, Laso Garcia, A, Ginestet, H, Gizzi, L, Gleason, A, Goede, S, Gonzalez, J, Harmand, M, Hartley, N, Heighway, P, Hernandez-Gomez, C, Higginbotham, A, Höppner, H, Husband, R, Hutchinson, T, Hwang, H, Lazicki, A, Keen, D, Kim, J, Koester, P, Konopkova, Z, Kraus, D, Krygier, A, Labate, L, Lee, Y, Liermann, H, Mason, P, Masruri, M, Massani, B, Mcbride, E, Mcguire, C, Mchardy, J, Merkel, S, Morard, G, Nagler, B, Nakatsutsumi, M, Nguyen-Cong, K, Norton, A, Oleynik, I, Otzen, C, Ozaki, N, Pandolfi, S, Peake, D, Pelka, A, Pereira, K, Phillips, J, Prescher, C, Preston, T, Randolph, L, Ranjan, D, Ravasio, A, Redmer, R, Rips, J, Santamaria-Perez, D, Savage, D, Schoelmerich, M, Schwinkendorf, J, Smith, J, Sollier, A, Spear, J, Spindloe, C, Stevenson, M, Strohm, C, Suer, T, Tang, M, Toncian, M, Toncian, T, Tracy, S, Trapananti, A, Tschentscher, T, Tyldesley, M, Vennari, C, Vinci, T, Vogel, S, Volz, T, Vorberger, J, Walsh, J, Wark, J, Willman, J, Wollenweber, L, Zastrau, U, Brambrink, E, Appel, K, Mcmahon, M, Gorman, M. G., McGonegle, D., Smith, R. F., Singh, S., Jenkins, T., McWilliams, R. S., Albertazzi, B., Ali, S. J., Antonelli, L., Armstrong, M. R., Baehtz, C., Ball, O. B., Banerjee, S., Belonoshko, A. B., Benuzzi-Mounaix, A., Bolme, C. A., Bouffetier, V., Briggs, R., Buakor, K., Butcher, T., Di Dio Cafiso, S., Cerantola, V., Chantel, J., Di Cicco, A., Clarke, S., Coleman, A. L., Collier, J., Collins, G. W., Comley, A. J., Coppari, F., Cowan, T. E., Cristoforetti, G., Cynn, H., Descamps, A., Dorchies, F., Duff, M. J., Dwivedi, A., Edwards, C., Eggert, J. H., Errandonea, D., Fiquet, G., Galtier, E., Laso Garcia, A., Ginestet, H., Gizzi, L., Gleason, A., Goede, S., Gonzalez, J. M., Harmand, M., Hartley, N. J., Heighway, P. G., Hernandez-Gomez, C., Higginbotham, A., Höppner, H., Husband, R. J., Hutchinson, T. M., Hwang, H., Lazicki, A. E., Keen, D. A., Kim, J., Koester, P., Konopkova, Z., Kraus, D., Krygier, A., Labate, L., Lee, Y., Liermann, H. -P., Mason, P., Masruri, M., Massani, B., McBride, E. E., McGuire, C., McHardy, J. D., Merkel, S., Morard, G., Nagler, B., Nakatsutsumi, M., Nguyen-Cong, K., Norton, A. -M., Oleynik, I. I., Otzen, C., Ozaki, N., Pandolfi, S., Peake, D. J., Pelka, A., Pereira, K. A., Phillips, J. P., Prescher, C., Preston, T. R., Randolph, L., Ranjan, D., Ravasio, A., Redmer, R., Rips, J., Santamaria-Perez, D., Savage, D. J., Schoelmerich, M., Schwinkendorf, J. -P., Smith, J., Sollier, A., Spear, J., Spindloe, C., Stevenson, M., Strohm, C., Suer, T. -A., Tang, M., Toncian, M., Toncian, T., Tracy, S. J., Trapananti, A., Tschentscher, T., Tyldesley, M., Vennari, C. E., Vinci, T., Vogel, S. C., Volz, T. J., Vorberger, J., Walsh, J. P. S., Wark, J. S., Willman, J. T., Wollenweber, L., Zastrau, U., Brambrink, E., Appel, K., and McMahon, M. I.
- Abstract
X-ray free electron laser (XFEL) sources coupled to high-power laser systems offer an avenue to study the structural dynamics of materials at extreme pressures and temperatures. The recent commissioning of the DiPOLE 100-X laser on the high energy density (HED) instrument at the European XFEL represents the state-of-the-art in combining x-ray diffraction with laser compression, allowing for compressed materials to be probed in unprecedented detail. Here, we report quantitative structural measurements of molten Sn compressed to 85(5) GPa and ∼ 3500 K. The capabilities of the HED instrument enable liquid density measurements with an uncertainty of ∼ 1 % at conditions which are extremely challenging to reach via static compression methods. We discuss best practices for conducting liquid diffraction dynamic compression experiments and the necessary intensity corrections which allow for accurate quantitative analysis. We also provide a polyimide ablation pressure vs input laser energy for the DiPOLE 100-X drive laser which will serve future users of the HED instrument.
- Published
- 2024
11. Lattice distortion and stability of (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide under high pressure
- Author
-
Cheng, B., Lou, H., Sarkar, A., Zeng, Z., Zhang, F., Chen, X., Tan, L., Glazyrin, K., liermann, H.-P., Yan, J., Wang, L., Djenadic, R., Hahn, H., and Zeng, Q.
- Published
- 2020
- Full Text
- View/download PDF
12. Phase transition lowering in dynamically compressed silicon
- Author
-
McBride, E. E., Krygier, A., Ehnes, A., Galtier, E., Harmand, M., Konôpková, Z., Lee, H. J., Liermann, H.-P., Nagler, B., Pelka, A., Rödel, M., Schropp, A., Smith, R. F., Spindloe, C., Swift, D., Tavella, F., Toleikis, S., Tschentscher, T., Wark, J. S., and Higginbotham, A.
- Published
- 2019
- Full Text
- View/download PDF
13. Polymorphism of ribavirin at high pressure
- Author
-
Tiwari, B., primary, Giordano, N., additional, Liermann, H. P., additional, and Parsons, S., additional
- Published
- 2023
- Full Text
- View/download PDF
14. Dynamic optical spectroscopy and pyrometry of static targets under optical and x-ray laser heating at the European XFEL
- Author
-
Ball, O. B., primary, Prescher, C., additional, Appel, K., additional, Baehtz, C., additional, Baron, M. A., additional, Briggs, R., additional, Cerantola, V., additional, Chantel, J., additional, Chariton, S., additional, Coleman, A. L., additional, Cynn, H., additional, Damker, H., additional, Dattelbaum, D., additional, Dresselhaus-Marais, L. E., additional, Eggert, J. H., additional, Ehm, L., additional, Evans, W. J., additional, Fiquet, G., additional, Frost, M., additional, Glazyrin, K., additional, Goncharov, A. F., additional, Husband, R. J., additional, Hwang, H., additional, Jaisle, N., additional, Jenei, Zs., additional, Kim, J.-Y., additional, Lee, Y., additional, Liermann, H. P., additional, Mainberger, J., additional, Makita, M., additional, Marquardt, H., additional, McBride, E. E., additional, McHardy, J. D., additional, McMahon, M. I., additional, Merkel, S., additional, Morard, G., additional, O’Bannon, E. F., additional, Otzen, C., additional, Pace, E. J., additional, Pelka, A., additional, Pépin, C. M., additional, Pigott, J. S., additional, Plückthun, C., additional, Prakapenka, V. B., additional, Redmer, R., additional, Speziale, S., additional, Spiekermann, G., additional, Strohm, C., additional, Sturtevant, B. T., additional, Talkovski, P., additional, Wollenweber, L., additional, Zastrau, U., additional, McWilliams, R. S., additional, and Konôpková, Z., additional
- Published
- 2023
- Full Text
- View/download PDF
15. Equation of state of ammonia dihydrate up to 112 GPa by static and dynamic compression experiments in diamond anvil cells
- Author
-
Mondal, A., primary, Husband, R. J., additional, Liermann, H.-P., additional, and Sanchez-Valle, C., additional
- Published
- 2023
- Full Text
- View/download PDF
16. Structural and magnetic properties of Cr2O3 at high pressure
- Author
-
Golosova, N.O., Kozlenko, D.P., Kichanov, S.E., Lukin, E.V., Liermann, H.-P., Glazyrin, K.V., and Savenko, B.N.
- Published
- 2017
- Full Text
- View/download PDF
17. Structural, vibrational, and thermochemical properties of the monazite-type solid solution La1–xPrxPO4
- Author
-
Hirsch, A., Kegler, P., Alencar, I., Ruiz-Fuertes, J., Shelyug, A., Peters, L., Schreinemachers, C., Neumann, A., Neumeier, S., Liermann, H.-P., Navrotsky, A., and Roth, G.
- Published
- 2017
- Full Text
- View/download PDF
18. Structural, magnetic and vibrational properties of multiferroic GaFeO3 at high pressure
- Author
-
Golosova, N.O., Kozlenko, D.P., Kichanov, S.E., Lukin, E.V., Dubrovinsky, L.S., Mammadov, A.I., Mehdiyeva, R.Z., Jabarov, S.H., Liermann, H.-P., Glazyrin, K.V., Dang, T.N., Smotrakov, V.G., Eremkin, V.V., and Savenko, B.N.
- Published
- 2016
- Full Text
- View/download PDF
19. Equation of state of ammonia dihydrate up to 112 GPa by static and dynamic compression experiments in diamond anvil cells
- Author
-
Mondal, Anshuman, Husband, Rachel, Liermann, H.-P., and Sanchez-Valle, Carmen
- Subjects
ddc:530 - Abstract
Physical review / B 107(22), 224108 (2023). doi:10.1103/PhysRevB.107.224108, Understanding the high-pressure behavior of ammonia hydrates is relevant for modeling the interior of solarand extrasolar icy bodies. We present here the results of high-pressure x-ray diffraction studies on ammonia-dihydrate (ADH) at room temperature (298 K) up to 112 GPa, employing both static and dynamic compressionexperiments performed in diamond anvil cells. The derived pressure-volume (P-V) compression curves arein excellent agreement regardless of the compression technique. In contrast to early theoretical predictions,our results indicate the stability of the disordered molecular alloy (DMA) phase, a body centered cubic (bcc)structure, and the absence of self-ionization in the investigated pressure range. By combining the P-V data fromseven different compression runs, we derive the first equation of state for ADH-DMA based on the third-orderBirch-Murnaghan formalism with best-fit parameters: V$_0$ = 23.96 ± 0.03 (Å$^3$ /molecule), B$_0$ = 9.95 ± 0.14 GPa,and B′$_0$ = 6.59 ± 0.03. The instantaneous bulk modulus directly derived from the quasicontinuous compressioncurves displays a smooth increase upon compression that further supports the absence of structural transitions., Published by Inst., Woodbury, NY
- Published
- 2023
- Full Text
- View/download PDF
20. Sub‐micrometer focusing setup for high‐pressure crystallography at the Extreme Conditions beamline at PETRA III
- Author
-
Glazyrin, K., Khandarkhaeva, S., Fedotenko, T., Dong, W., Laniel, D., Seiboth, F., Schropp, A., Garrevoet, J., Brückner, D., Falkenberg, G., Kubec, A., David, C., Wendt, M., Wenz, S., Dubrovinsky, L., Dubrovinskaia, N., Liermann, H.-P., Khandarkhaeva, S., 2University of BayreuthBayerisches GeoinstitutUniversitätsstrasse 30 Bayreuth 95440 Germany, Fedotenko, T., 1Deutsches Elektronen-Synchrotron DESYNotkestrasse 85 Hamburg 22607 Germany, Dong, W., Laniel, D., 3University of BayreuthMaterial Physics and Technology at Extreme Conditions, Laboratory of CrystallographyUniversitätsstrasse 30 Bayreuth 95440 Germany, Seiboth, F., 4Deutsches Elektronen-Synchrotron DESYCenter for X-ray and Nano Science CXNSNotkestrasse 85 Hamburg 22607 Germany, Schropp, A., Garrevoet, J., Brückner, D., Falkenberg, G., Kubec, A., 8Paul Scherrer InstitutLaboratory for Micro- and NanotechnologyForschungsstrasse 111 Villigen-PSI 5232 Switzerland, David, C., Wendt, M., Wenz, S., Dubrovinsky, L., Dubrovinskaia, N., and Liermann, H.-P.
- Subjects
ddc:548 - Abstract
Scientific tasks aimed at decoding and characterizing complex systems and processes at high pressures set new challenges for modern X‐ray diffraction instrumentation in terms of X‐ray flux, focal spot size and sample positioning. Presented here are new developments at the Extreme Conditions beamline (P02.2, PETRA III, DESY, Germany) that enable considerable improvements in data collection at very high pressures and small scattering volumes. In particular, the focusing of the X‐ray beam to the sub‐micrometer level is described, and control of the aberrations of the focusing compound refractive lenses is made possible with the implementation of a correcting phase plate. This device provides a significant enhancement of the signal‐to‐noise ratio by conditioning the beam shape profile at the focal spot. A new sample alignment system with a small sphere of confusion enables single‐crystal data collection from grains of micrometer to sub‐micrometer dimensions subjected to pressures as high as 200 GPa. The combination of the technical development of the optical path and the sample alignment system contributes to research and gives benefits on various levels, including rapid and accurate diffraction mapping of samples with sub‐micrometer resolution at multimegabar pressures., Facing the challenges of X‐ray diffraction from tiny samples subjected to multimegabar pressures, instrumentation developments are presented that enable, among other studies, single‐crystal data collection from micrometer‐ to sub‐micrometer‐sized grains. The developments are based on a sub‐micrometer beam capability employing compound refractive lenses operating with a phase correcting plate and a precise motorization solution.
- Published
- 2022
21. Strength and seismic anisotropy of textured FeSi at planetary core conditions
- Author
-
Kolesnikov, E., Kupenko, I., Achorner, M., Plückthun, C., Liermann, H.-P., Merkel, S., Sanchez-Valle, C., Université de Lille, CNRS, INRAE, ENSCL, Unité Matériaux et Transformations (UMET) - UMR 8207, Westfälische Wilhelms-Universität Münster = University of Münster [WWU], Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Deutsches Elektronen-Synchrotron [Hamburg] (DESY), Unité Matériaux et Transformations - UMR 8207 (UMET), Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and European Project: 730872,CALIPSOplus
- Subjects
[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,yield strength ,diamond-anvil cells ,planetary science ,core material ,anisotropy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,ddc:550 ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Earth and Planetary Sciences ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Frontiers in Earth Science 10, 974148 (2022). doi:10.3389/feart.2022.974148, Elastic anisotropy of iron-bearing alloys and compounds can lead to a variation of seismic velocities along different directions in planetary cores. Understanding the deformation properties of candidate core-forming materials is thus necessary to reveal the details about the interior of distant planets. Silicon has been considered to be one of the dominant light elements in the cores. Here we investigated the deformation of the ε-FeSi phase up to 49 GPa and 1100 K employing the radial X-ray diffraction technique in diamond anvil cells. Stoichiometric FeSi is a good approximation for the deformation behavior of the Fe-FeSi system and the low-pressure polymorph of FeSi may be the stable phase in the cores of small terrestrial planets such as Mercury. Yield strength in ε-FeSi is higher than in hcp-Fe and hcp-Fe-Si alloys, in the temperature range we investigated here the temperature has little influence on the lattice strain parameters, yield strength, and anisotropy within experimental precision. The azimuthal anisotropy of the longitudinal sound waves in ε-FeSi is below 0.6% at low pressure and decreases further with compression, while the shear wave contrast is below 1.25% in the entire investigated pressure range. Therefore, polycrystalline aggregates of iron silicide are nearly isotropic at extreme conditions. Consequently, any observed anisotropy in planetary cores will be incompatible with silicon being the dominant light element in the core composition., Published by Frontiers Media, Lausanne
- Published
- 2022
- Full Text
- View/download PDF
22. Structural modifications of swift-ion-bombarded metallic glasses studied by high-energy X-ray synchrotron radiation
- Author
-
Michalik, S., Michalikova, J., Pavlovic, M., Sovak, P., Liermann, H.-P., and Miglierini, M.
- Published
- 2014
- Full Text
- View/download PDF
23. Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard x-ray irradiation.
- Author
-
Meza-Galvez, J., Gomez-Perez, N., Marshall, A. S., Coleman, A. L., Appel, K., Liermann, H. P., McMahon, M. I., Konôpková, Z., and McWilliams, R. S.
- Subjects
HARD X-rays ,DIAMOND anvil cell ,FREE electron lasers ,RADIATION sources ,SYNCHROTRON radiation ,HIGH power lasers - Abstract
In the laboratory study of extreme conditions of temperature and density, the exposure of matter to high intensity radiation sources has been of central importance. Here, we interrogate the performance of multi-layered targets in experiments involving high intensity, hard x-ray irradiation, motivated by the advent of extremely high brightness hard x-ray sources, such as free electron lasers and 4th-generation synchrotron facilities. Intense hard x-ray beams can deliver significant energy in targets having thick x-ray transparent layers (tampers) around samples of interest for the study of novel states of matter and materials' dynamics. Heated-state lifetimes in such targets can approach the microsecond level, regardless of radiation pulse duration, enabling the exploration of conditions of local thermal and thermodynamic equilibrium at extreme temperature in solid density matter. The thermal and mechanical responses of such thick layered targets following x-ray heating, including hydrodynamic relaxation and heat flow on picosecond to millisecond timescales, are modeled using radiation hydrocode simulation, finite element analysis, and thermodynamic calculations. Assessing the potential for target survival over one or more exposures and resistance to damage arising from heating and resulting mechanical stresses, this study doubles as an investigation into the performance of diamond anvil high pressure cells under high x-ray fluences. Long used in conjunction with synchrotron x-ray radiation and high power optical lasers, the strong confinement afforded by such cells suggests novel applications at emerging high intensity x-ray facilities and new routes to studying thermodynamic equilibrium states of warm, very dense matter. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
24. Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts
- Author
-
Bykova, E., Bykov, M., Černok, A., Tidholm, J., Simak, S. I., Hellman, O., Belov, M. P., Abrikosov, I. A., Liermann, H.-P., Hanfland, M., Prakapenka, V. B., Prescher, C., Dubrovinskaia, N., and Dubrovinsky, L.
- Published
- 2018
- Full Text
- View/download PDF
25. Broad Elastic Softening of (Mg,Fe)O Ferropericlase Across the Iron Spin Crossover and a Mixed‐Spin Lower Mantle
- Author
-
Méndez, A. S. J., primary, Stackhouse, S., additional, Trautner, V., additional, Wang, B., additional, Satta, N., additional, Kurnosov, A., additional, Husband, R. J., additional, Glazyrin, K., additional, Liermann, H.‐P., additional, and Marquardt, H., additional
- Published
- 2022
- Full Text
- View/download PDF
26. The most incompressible metal osmium at static pressures above 750 gigapascals
- Author
-
Dubrovinsky, L., Dubrovinskaia, N., Bykova, E., Bykov, M., Prakapenka, V., Prescher, C., Glazyrin, K., Liermann, H.- P., Hanfland, M., Ekholm, M., Feng, Q., Pourovskii, L.V., Katsnelson, M.I., Wills, J.M., and Abrikosov, I.A.
- Subjects
X-rays -- Diffraction ,Fermi surfaces ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Metallic osmium (Os) is one of the most exceptional elemental materials, having, at ambient pressure, the highest known density and one of the highest cohesive energies and melting temperatures (1). It is also very incompressible (2-4), but its high-pressure behaviour is not well understood because it has been studied (2-6) so far only at pressures below 75 gigapascals. Here we report powder X-ray diffraction measurements on Os at multi-megabar pressures using both conventional and double-stage diamond anvil cells (7), with accurate pressure determination ensured by first obtaining self-consistent equations of state of gold, platinum, and tungsten in static experiments up to 500 gigapascals. These measurements allow us to show that Os retains its hexagonal close-packed structure upon compression to over 770 gigapascals. But although its molar volume monotonically decreases with pressure, the unit cell parameter ratio of Os exhibits anomalies at approximately 150 gigapascals and 440 gigapascals. Dynamical mean-field theory calculations suggest that the former anomaly is a signature of the topological change of the Fermi surface for valence electrons. However, the anomaly at 440 gigapascals might be related to an electronic transition associated with pressure-induced interactions between core electrons. The ability to affect the core electrons under static high-pressure experimental conditions, even for incompressible metals such as Os, opens up opportunities to search for new states of matter under extreme compression., The platinoid 5d transition elements Re, Os, and Ir are the densest and stiffest metals (1, 7). Although a short-lived claim (4) that Os is stiffer than diamond (8) was [...]
- Published
- 2015
27. Simultaneous imaging and diffraction in the dynamic diamond anvil cell
- Author
-
Husband, R. J., primary, Hagemann, J., additional, O’Bannon, E. F., additional, Liermann, H.-P., additional, Glazyrin, K., additional, Sneed, D. T., additional, Lipp, M. J., additional, Schropp, A., additional, Evans, W. J., additional, and Jenei, Zs., additional
- Published
- 2022
- Full Text
- View/download PDF
28. Sub-micrometer focusing setup for high-pressure crystallography at the Extreme Conditions beamline at PETRA III
- Author
-
Glazyrin, K., primary, Khandarkhaeva, S., additional, Fedotenko, T., additional, Dong, W., additional, Laniel, D., additional, Seiboth, F., additional, Schropp, A., additional, Garrevoet, J., additional, Brückner, D., additional, Falkenberg, G., additional, Kubec, A., additional, David, C., additional, Wendt, M., additional, Wenz, S., additional, Dubrovinsky, L., additional, Dubrovinskaia, N., additional, and Liermann, H.-P., additional
- Published
- 2022
- Full Text
- View/download PDF
29. In situ x-ray diffraction study of dynamically compressed α -cristobalite using a dynamic diamond anvil cell
- Author
-
Schoelmerich, Markus, Mendez, A. S. J., Plueckthun, C., Biedermann, N., Husband, R., Preston, T. R., Wollenweber, L., Klimm, K., Tschentscher, Thomas, Redmer, R., Liermann, H. P., and Appel, K.
- Subjects
ddc:530 - Abstract
Physical review / B 105(6), 064109 (2022). doi:10.1103/PhysRevB.105.064109, In this study we present results of the dynamic compression of $��$-cristobalite up to a pressure of 106 GPa with the use of the dynamic diamond anvil cell. X-ray diffraction images were recorded at different ramp compression and decompression rates to investigate in situ the high-pressure phase transitions of ��-cristobalite. Our results suggest that the pressure onset of the phase transformation of $��$-cristobalite to cristobalite II, cristobalite X-I, and ultimately to seifertite ($��$���PbO$_2$ type SiO$_2$) is dependent on the applied compression rates and stress conditions of the experiment. Increasing compression rates in general shift the studied phase transitions to higher pressures. Furthermore, our results indicate for single crystals under hydrostatic conditions a suppression of a phase transition from cristobalite X-I to seifertite at pressures of up to 82 GPa.
- Published
- 2022
- Full Text
- View/download PDF
30. The equation of state of TaC0.99 by X-ray diffraction in radial scattering geometry to 32 GPa and 1073 K.
- Author
-
Speziale, S., Immoor, J., Ermakov, A., Merkel, S., Marquardt, H., and Liermann, H.-P.
- Subjects
DIFFRACTIVE scattering ,BULK modulus ,EQUATIONS of state ,X-ray diffraction ,DIAMOND anvil cell ,GEOMETRY - Abstract
We have performed in situ synchrotron X-ray diffraction experiments on TaC
0.99 compressed in a diamond anvil cell along 3 isothermal paths to maximum pressure (P)-temperature (T) conditions of 38.8 GPa at 1073 K. By combining measurements performed in axial diffraction geometry at 296 K and in radial geometry at 673 K and 1073 K, we place constraints on the pressure-volume-temperature (P-V-T) equation of state of TaC in a wide range of conditions. A fit of the Birch-Murnaghan equation to the measurements performed in axial geometry at ambient temperature yields a value of the isothermal bulk modulus at ambient conditions K T 0 = 305 ± 5 (1 σ) GPa and its pressure derivative (∂ K T / ∂ P) T 0 = 6.1 ± 0.5. The fit of the Birch-Murnaghan-Debye model to our complete P-V-T dataset allows us to constrain the Grüneisen parameter at ambient pressure γ 0 = V (∂ P / ∂ E) V 0 to the value of 1.2 ± 0.1. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
31. Structural evolution in liquid GaIn eutectic alloy under high temperature and pressure.
- Author
-
Yu, Q., Su, Y., Wang, X. D., Ståhl, K., Glazyrin, K., Liermann, H. P., Franz, H., Cao, Q. P., Zhang, D. X., and Jiang, J. Z.
- Subjects
EUTECTIC alloys ,HIGH temperatures ,ISOTHERMAL compression ,PHASE diagrams ,PRESSURE ,INJECTION molding - Abstract
The structural evolution of a liquid GaIn eutectic alloy under high temperature and high pressure is investigated by combining in situ X-ray diffraction (XRD) and ab initio molecular dynamics simulations. Both experimental and theoretical results confirm that no pressure-induced sudden structural changes are detected in the liquid state along different isotherms below 700 K. The XRD patterns indicate that the liquids at 400 and 673 K both crystallize into a tetragonal crystalline phase under high pressure, whose structure is locally face centered cubic (fcc)-like. The theoretical simulations successfully describe the atomic-scale structural evolution from disordered liquid to ordered solid phases during the isothermal compression at different temperatures, revealing a strong competition between the body-centered cubic (bcc)-like and fcc-like local atomic packings at the early stage of nucleation. The liquid can directly solidify into the bcc-like atomic packing at temperatures above 650 K, whereas this bcc-like structure becomes transient and metastable below 600 K and finally transforms into a stable fcc-like atomic packing with increasing pressure. Furthermore, a high-pressure and high-temperature "phase diagram" of the GaIn eutectic alloy is roughly constructed, providing new insight into atomic-scale disorder-to-order transition of the liquid GaIn eutectic alloy in extreme conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
32. In situ x-ray diffraction study of dynamically compressed α -cristobalite using a dynamic diamond anvil cell
- Author
-
Schoelmerich, M. O., primary, Mendez, A. S. J., additional, Plueckthun, C., additional, Biedermann, N., additional, Husband, R., additional, Preston, T. R., additional, Wollenweber, L., additional, Klimm, K., additional, Tschentscher, T., additional, Redmer, R., additional, Liermann, H. P., additional, and Appel, K., additional
- Published
- 2022
- Full Text
- View/download PDF
33. Pressure-induced antiferromagnet-ferromagnet transition and a change in the spin state of Co in La0.5Ba0.5CoO2.8
- Author
-
Kozlenko, D. P., Rutkauskas, A. V., Dang, N. T., Golosova, N. O., Kichanov, S. E., Dubrovinsky, L. S., Liermann, H. -P., Morgenroth, W., and Savenko, B. N.
- Published
- 2014
- Full Text
- View/download PDF
34. Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO2
- Author
-
Koemets, E., Leonov, I., Bykov, M., Bykova, E., Chariton, S., Aprilis, G., Fedotenko, T., Clément, S., Rouquette, J., Haines, J., Cerantola, V., Glazyrin, K., McCammon, C., Prakapenka, V. B., Hanfland, M., Liermann, H. -P., Svitlyk, V., Torchio, R., Rosa, A. D., Irifune, T., Ponomareva, A. V., Abrikosov, I. A., Dubrovinskaia, N., Dubrovinsky, L., Koemets, E., Leonov, I., Bykov, M., Bykova, E., Chariton, S., Aprilis, G., Fedotenko, T., Clément, S., Rouquette, J., Haines, J., Cerantola, V., Glazyrin, K., McCammon, C., Prakapenka, V. B., Hanfland, M., Liermann, H. -P., Svitlyk, V., Torchio, R., Rosa, A. D., Irifune, T., Ponomareva, A. V., Abrikosov, I. A., Dubrovinskaia, N., and Dubrovinsky, L.
- Abstract
Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe2O3 and the appearance of FeO2. Here, based on the results of in situ single-crystal x-ray diffraction, Mössbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory+dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO2 and isostructural FeO2H0.5 is ferric (Fe3+), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites. © 2021 American Physical Society.
- Published
- 2021
35. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL)
- Author
-
Liermann, H. P., Konôpková, Z., Appel, K., Prescher, C., Schropp, A., Cerantola, V., Husband, R. J., McHardy, J. D., McMahon, M. I., McWilliams, R. S., Pépin, C. M., Mainberger, J., Roeper, M., Berghäuser, A., Damker, H., Talkovski, P., Foese, M., Kujala, N., Ball, O. B., Baron, M. A., Briggs, R., Bykov, M., Bykova, E., Chantel, J., Coleman, A. L., Cynn, H., Dattelbaum, D., Dresselhaus-Marais, L. E., Eggert, J. H., Ehm, L., Evans, W. J., Fiquet, G., Frost, M., Glazyrin, K., Goncharov, A. F., Hwang, H., Jenei, Z., Kim, J.-Y., Langenhorst, F., Lee, Y., Makita, M., Marquardt, H., McBride, E. E., Merkel, S., Morard, G., Obannon, E. F., Otzen, C., Pace, E. J., Pelka, A., Pigott, J. S., Prakapenka, V. B., Redmer, R., Sanchez-Valle, C., Schölmerich, M., Speziale, S., Spiekermann, G., Sturtevant, B. T., Toleikis, S., Velisavljevic, N., Wilke, M., Yoo, C.-S., Baehtz, C., Zastrau, U., Strohm, C., Liermann, H. P., Konôpková, Z., Appel, K., Prescher, C., Schropp, A., Cerantola, V., Husband, R. J., McHardy, J. D., McMahon, M. I., McWilliams, R. S., Pépin, C. M., Mainberger, J., Roeper, M., Berghäuser, A., Damker, H., Talkovski, P., Foese, M., Kujala, N., Ball, O. B., Baron, M. A., Briggs, R., Bykov, M., Bykova, E., Chantel, J., Coleman, A. L., Cynn, H., Dattelbaum, D., Dresselhaus-Marais, L. E., Eggert, J. H., Ehm, L., Evans, W. J., Fiquet, G., Frost, M., Glazyrin, K., Goncharov, A. F., Hwang, H., Jenei, Z., Kim, J.-Y., Langenhorst, F., Lee, Y., Makita, M., Marquardt, H., McBride, E. E., Merkel, S., Morard, G., Obannon, E. F., Otzen, C., Pace, E. J., Pelka, A., Pigott, J. S., Prakapenka, V. B., Redmer, R., Sanchez-Valle, C., Schölmerich, M., Speziale, S., Spiekermann, G., Sturtevant, B. T., Toleikis, S., Velisavljevic, N., Wilke, M., Yoo, C.-S., Baehtz, C., Zastrau, U., and Strohm, C.
- Abstract
The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump–probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.
- Published
- 2021
36. The High Energy Density Scientific Instrument at the European XFEL
- Author
-
Zastrau, U., Appel, K., Bähtz, C., Bähr, O., Batchelor, L., Berghäuser, A., Banjafar, M., Brambrink, E., Cerantola, V., (0000-0002-5845-000X) Cowan, T., Damker, H., Dittrich, S., Di Dio Cafiso, S. D., Dreyer, J., Engel, H.-O., Feldmann, T., Findeisen, S., Foese, M., Fulla-Marsa, D., Göde, S., Hassan, M. K. Y., Hauser, J., (0000-0001-6706-4541) Herrmannsdörfer, T., Höppner, H., Kaa, J., Kaever, P., Knöfel, K., Konopkova, Z., (0000-0002-7671-0901) Laso García, A., Liermann, H.-P., Mainberger, J., Makita, M., Martens, E.-C., McBride, E. E., Möller, D., Nakatsutsumi, M., Pelka, A., Plueckthun, C., Prescher, C., Preston, T. R., Röper, M., Schmidt, A., Seidel, W., Schwinkendorf, J.-P., Schoelmerich, M. O., (0000-0003-0390-7671) Schramm, U., Schropp, A., Strohm, C., Sukharnikov, K., Talkovski, P., Thorpe, I., Toncian, M., (0000-0001-7986-3631) Toncian, T., Wollenweber, L., (0000-0001-5819-2867) Yamamoto, S., Tschentscher, T., Zastrau, U., Appel, K., Bähtz, C., Bähr, O., Batchelor, L., Berghäuser, A., Banjafar, M., Brambrink, E., Cerantola, V., (0000-0002-5845-000X) Cowan, T., Damker, H., Dittrich, S., Di Dio Cafiso, S. D., Dreyer, J., Engel, H.-O., Feldmann, T., Findeisen, S., Foese, M., Fulla-Marsa, D., Göde, S., Hassan, M. K. Y., Hauser, J., (0000-0001-6706-4541) Herrmannsdörfer, T., Höppner, H., Kaa, J., Kaever, P., Knöfel, K., Konopkova, Z., (0000-0002-7671-0901) Laso García, A., Liermann, H.-P., Mainberger, J., Makita, M., Martens, E.-C., McBride, E. E., Möller, D., Nakatsutsumi, M., Pelka, A., Plueckthun, C., Prescher, C., Preston, T. R., Röper, M., Schmidt, A., Seidel, W., Schwinkendorf, J.-P., Schoelmerich, M. O., (0000-0003-0390-7671) Schramm, U., Schropp, A., Strohm, C., Sukharnikov, K., Talkovski, P., Thorpe, I., Toncian, M., (0000-0001-7986-3631) Toncian, T., Wollenweber, L., (0000-0001-5819-2867) Yamamoto, S., and Tschentscher, T.
- Abstract
The European XFEL delivers up to 27000 intense (>1012 photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses.
- Published
- 2021
37. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL)
- Author
-
Liermann, H, Konôpková, Z, Appel, K, Prescher, C, Schropp, A, Cerantola, V, Husband, R, Mchardy, J, Mcmahon, M, Mcwilliams, R, Pépin, C, Mainberger, J, Roeper, M, Berghäuser, A, Damker, H, Talkovski, P, Foese, M, Kujala, N, Ball, O, Baron, M, Briggs, R, Bykov, M, Bykova, E, Chantel, J, Coleman, A, Cynn, H, Dattelbaum, D, Dresselhaus-Marais, L, Eggert, J, Ehm, L, Evans, W, Fiquet, G, Frost, M, Glazyrin, K, Goncharov, A, Hwang, H, Jenei, Z, Kim, J, Langenhorst, F, Lee, Y, Makita, M, Marquardt, H, Mcbride, E, Merkel, S, Morard, G, O'Bannon, E, Otzen, C, Pace, E, Pelka, A, Pigott, J, Prakapenka, V, Redmer, R, Sanchez-Valle, C, Schoelmerich, M, Speziale, S, Spiekermann, G, Sturtevant, B, Toleikis, S, Velisavljevic, N, Wilke, M, Yoo, C, Baehtz, C, Zastrau, U, Strohm, C, Liermann, H P, Husband, R J, McHardy, J D, McMahon, M I, McWilliams, R S, Pépin, C M, Ball, O B, Baron, M A, Coleman, A L, Dresselhaus-Marais, L E, Eggert, J H, Evans, W J, Goncharov, A F, Jenei, Zs, Kim, J Y, McBride, E E, O'Bannon, E F, Pace, E J, Pigott, J S, Prakapenka, V B, Sturtevant, B T, Yoo, C S, Liermann, H, Konôpková, Z, Appel, K, Prescher, C, Schropp, A, Cerantola, V, Husband, R, Mchardy, J, Mcmahon, M, Mcwilliams, R, Pépin, C, Mainberger, J, Roeper, M, Berghäuser, A, Damker, H, Talkovski, P, Foese, M, Kujala, N, Ball, O, Baron, M, Briggs, R, Bykov, M, Bykova, E, Chantel, J, Coleman, A, Cynn, H, Dattelbaum, D, Dresselhaus-Marais, L, Eggert, J, Ehm, L, Evans, W, Fiquet, G, Frost, M, Glazyrin, K, Goncharov, A, Hwang, H, Jenei, Z, Kim, J, Langenhorst, F, Lee, Y, Makita, M, Marquardt, H, Mcbride, E, Merkel, S, Morard, G, O'Bannon, E, Otzen, C, Pace, E, Pelka, A, Pigott, J, Prakapenka, V, Redmer, R, Sanchez-Valle, C, Schoelmerich, M, Speziale, S, Spiekermann, G, Sturtevant, B, Toleikis, S, Velisavljevic, N, Wilke, M, Yoo, C, Baehtz, C, Zastrau, U, Strohm, C, Liermann, H P, Husband, R J, McHardy, J D, McMahon, M I, McWilliams, R S, Pépin, C M, Ball, O B, Baron, M A, Coleman, A L, Dresselhaus-Marais, L E, Eggert, J H, Evans, W J, Goncharov, A F, Jenei, Zs, Kim, J Y, McBride, E E, O'Bannon, E F, Pace, E J, Pigott, J S, Prakapenka, V B, Sturtevant, B T, and Yoo, C S
- Abstract
The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump-probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.
- Published
- 2021
38. Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO2
- Author
-
Koemets, E, Leonov, I, Bykov, M, Bykova, E, Chariton, S, Aprilis, G, Fedotenko, T, Clément, S, Rouquette, J, Haines, J, Cerantola, V, Glazyrin, K, Mccammon, C, Prakapenka, V, Hanfland, M, Liermann, H, Svitlyk, V, Torchio, R, Rosa, A, Irifune, T, Ponomareva, A, Abrikosov, I, Dubrovinskaia, N, Dubrovinsky, L, McCammon, C, Prakapenka, V B, Liermann, H-P, Rosa, A D, Ponomareva, A V, Abrikosov, I A, Koemets, E, Leonov, I, Bykov, M, Bykova, E, Chariton, S, Aprilis, G, Fedotenko, T, Clément, S, Rouquette, J, Haines, J, Cerantola, V, Glazyrin, K, Mccammon, C, Prakapenka, V, Hanfland, M, Liermann, H, Svitlyk, V, Torchio, R, Rosa, A, Irifune, T, Ponomareva, A, Abrikosov, I, Dubrovinskaia, N, Dubrovinsky, L, McCammon, C, Prakapenka, V B, Liermann, H-P, Rosa, A D, Ponomareva, A V, and Abrikosov, I A
- Abstract
Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides, resulting in numerous compounds forming homologous series nFeOmFe2O3 and the appearance of FeO2. Here, based on the results of in situ single-crystal x-ray diffraction, Mössbauer spectroscopy, x-ray absorption spectroscopy, and density-functional theory+dynamical mean-field theory calculations, we demonstrate that iron in high-pressure cubic FeO2 and isostructural FeO2H0.5 is ferric (Fe3+), and oxygen has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can be explained by a formation of a localized hole at oxygen sites.
- Published
- 2021
39. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL)
- Author
-
Liermann, H. P., primary, Konôpková, Z., additional, Appel, K., additional, Prescher, C., additional, Schropp, A., additional, Cerantola, V., additional, Husband, R. J., additional, McHardy, J. D., additional, McMahon, M. I., additional, McWilliams, R. S., additional, Pépin, C. M., additional, Mainberger, J., additional, Roeper, M., additional, Berghäuser, A., additional, Damker, H., additional, Talkovski, P., additional, Foese, M., additional, Kujala, N., additional, Ball, O. B., additional, Baron, M. A., additional, Briggs, R., additional, Bykov, M., additional, Bykova, E., additional, Chantel, J., additional, Coleman, A. L., additional, Cynn, H., additional, Dattelbaum, D., additional, Dresselhaus-Marais, L. E., additional, Eggert, J. H., additional, Ehm, L., additional, Evans, W. J., additional, Fiquet, G., additional, Frost, M., additional, Glazyrin, K., additional, Goncharov, A. F., additional, Hwang, H., additional, Jenei, Zs., additional, Kim, J.-Y., additional, Langenhorst, F., additional, Lee, Y., additional, Makita, M., additional, Marquardt, H., additional, McBride, E. E., additional, Merkel, S., additional, Morard, G., additional, O'Bannon, E. F., additional, Otzen, C., additional, Pace, E. J., additional, Pelka, A., additional, Pigott, J. S., additional, Prakapenka, V. B., additional, Redmer, R., additional, Sanchez-Valle, C., additional, Schoelmerich, M., additional, Speziale, S., additional, Spiekermann, G., additional, Sturtevant, B. T., additional, Toleikis, S., additional, Velisavljevic, N., additional, Wilke, M., additional, Yoo, C.-S., additional, Baehtz, C., additional, Zastrau, U., additional, and Strohm, C., additional
- Published
- 2021
- Full Text
- View/download PDF
40. Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO2
- Author
-
Koemets, E., primary, Leonov, I., additional, Bykov, M., additional, Bykova, E., additional, Chariton, S., additional, Aprilis, G., additional, Fedotenko, T., additional, Clément, S., additional, Rouquette, J., additional, Haines, J., additional, Cerantola, V., additional, Glazyrin, K., additional, McCammon, C., additional, Prakapenka, V. B., additional, Hanfland, M., additional, Liermann, H.-P., additional, Svitlyk, V., additional, Torchio, R., additional, Rosa, A. D., additional, Irifune, T., additional, Ponomareva, A. V., additional, Abrikosov, I. A., additional, Dubrovinskaia, N., additional, and Dubrovinsky, L., additional
- Published
- 2021
- Full Text
- View/download PDF
41. Bulk modulus of H2O across the ice VII–ice X transition measured by time-resolved x-ray diffraction in dynamic diamond anvil cell experiments
- Author
-
Méndez, A. S. J., primary, Trybel, F., additional, Husband, R. J., additional, Steinle-Neumann, G., additional, Liermann, H.-P., additional, and Marquardt, H., additional
- Published
- 2021
- Full Text
- View/download PDF
42. Structural stability of high entropy alloys under pressure and temperature.
- Author
-
Ahmad, Azkar S., Su, Y., Liu, S. Y., Ståhl, K., Wu, Y. D., Hui, X. D., Ruett, U., Gutowski, O., Glazyrin, K., Liermann, H. P., Franz, H., Wang, H., Wang, X. D., Cao, Q. P., Zhang, D. X., and Jiang, J. Z.
- Subjects
ALLOYS ,STRUCTURAL stability ,INDUSTRIAL applications ,FACE centered cubic structure ,CRYSTAL structure - Abstract
The stability of high-entropy alloys (HEAs) is a key issue before their selection for industrial applications. In this study, in-situ high-pressure and high-temperature synchrotron radiation X-ray diffraction experiments have been performed on three typical HEAs Ni
20 Co20 Fe20 Mn20 Cr20 , Hf25 Nb25 Zr25 Ti25 , and Re25 Ru25 Co25 Fe25 (at. %), having face-centered cubic (fcc), body-centered cubic (bcc), and hexagonal close-packed (hcp) crystal structures, respectively, up to the pressure of ~80 GPa and temperature of ~1262 K. Under the extreme conditions of the pressure and temperature, all three studied HEAs remain stable up to the maximum pressure and temperatures achieved. For these three types of studied HEAs, the pressure-dependence of the volume can be well described with the third order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are found to be 88.3 GPa and 4 for bcc-Hf25 Nb25 Zr25 Ti25 , 193.9 GPa and 5.9 for fcc-Ni20 Co20 Fe20 Mn20 Cr20 , and 304.6 GPa and 3.8 for hcp-Re25 Ru25 Co25 Fe25 HEAs, respectively. The thermal expansion coefficient for the three studied HEAs is found to be in the order as follows: fcc-Ni20 Co20 Fe20 Mn20 Cr20 >bcc-Hf25 Nb25 Zr25 Ti25 ≈hcp-Re25 Ru25 Co25 Fe25 . [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
43. Weak cubic CaSiO3 perovskite in the Earth’s mantle.
- Author
-
Immoor, J., Miyagi, L., Liermann, H.-P., Speziale, S., Schulze, K., Buchen, J., Kurnosov, A., and Marquardt, H.
- Abstract
Cubic CaSiO
3 perovskite is a major phase in subducted oceanic crust, where it forms at a depth of about 550 kilometres from majoritic garnet1,2,28. However, its rheological properties at temperatures and pressures typical of the lower mantle are poorly known. Here we measured the plastic strength of cubic CaSiO3 perovskite at pressure and temperature conditions typical for a subducting slab up to a depth of about 1,200 kilometres. In contrast to tetragonal CaSiO3 , previously investigated at room temperature3,4, we find that cubic CaSiO3 perovskite is a comparably weak phase at the temperatures of the lower mantle. We find that its strength and viscosity are substantially lower than that of bridgmanite and ferropericlase, possibly making cubic CaSiO3 perovskite the weakest lower-mantle phase. Our findings suggest that cubic CaSiO3 perovskite governs the dynamics of subducting slabs. Weak CaSiO3 perovskite further provides a mechanism to separate subducted oceanic crust from the underlying mantle. Depending on the depth of the separation, basaltic crust could accumulate at the boundary between the upper and lower mantle, where cubic CaSiO3 perovskite may contribute to the seismically observed regions of low shear-wave velocities in the uppermost lower mantle5,6, or sink to the core–mantle boundary and explain the seismic anomalies associated with large low-shear-velocity provinces beneath Africa and the Pacific7–9.At temperatures and pressures typical of the Earth’s lower mantle, cubic CaSiO3 perovskite is found to have lower strength and viscosity compared to bridgmanite and ferropericlase, providing clues to its role in subduction regions. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
44. A resistively-heated dynamic diamond anvil cell (RHdDAC) for fast compression x-ray diffraction experiments at high temperatures
- Author
-
Méndez, A. S. J., primary, Marquardt, H., additional, Husband, R. J., additional, Schwark, I., additional, Mainberger, J., additional, Glazyrin, K., additional, Kurnosov, A., additional, Otzen, C., additional, Satta, N., additional, Bednarcik, J., additional, and Liermann, H.-P., additional
- Published
- 2020
- Full Text
- View/download PDF
45. High-pressure structural systematics in samarium up to 222 GPa
- Author
-
Finnegan, S. E., primary, Pace, E. J., additional, Storm, C. V., additional, McMahon, M. I., additional, MacLeod, S. G., additional, Liermann, H.-P., additional, and Glazyrin, K., additional
- Published
- 2020
- Full Text
- View/download PDF
46. An improved setup for radial diffraction experiments at high pressures and high temperatures in a resistive graphite-heated diamond anvil cell
- Author
-
Immoor, J., primary, Marquardt, H., additional, Miyagi, L., additional, Speziale, S., additional, Merkel, S., additional, Schwark, I., additional, Ehnes, A., additional, and Liermann, H.-P., additional
- Published
- 2020
- Full Text
- View/download PDF
47. Breakdown of intermediate range order in AsSe chalcogenide glass.
- Author
-
Ahmad, Azkar S., Glazyrin, K., Liermann, H. P., Franz, H., Wang, X. D., Cao, Q. P., Zhang, D. X., and Jiang, J. Z.
- Subjects
ARSENIC selenide ,CHALCOGENIDE glass ,PHASE transitions ,MOLECULAR dynamics ,CRYSTAL structure - Abstract
As-cast amorphous AsSe (a-AsSe) has been characterized by in-situ high pressure XRD and Raman spectroscopy up to the pressure of ~30GPa using diamond anvil cell together with ab-initio molecular dynamics simulations. A gradual densification has been observed under compression along with the breakdown of intermediate range ordering at ~16GPa. The whole transformation process can be divided into three relatively distinct pressure regimes from 1 bar to 7GPa, from 7 to 16GPa, and beyond 16GPa. Our XRD results together with Raman spectroscopic studies confirm that in the a-AsSe pressure tuning results in network transformations only, without sudden jump in the density. The results obtained by high pressure ab-initio molecular dynamics simulations demonstrate the variations in the local structures associated with the experimentally observed transformations. The amorphous-to-amorphous network transformation is found to be reversible upon decompression. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
48. Weak cubic CaSiO3perovskite in the Earth’s mantle
- Author
-
Immoor, J., Miyagi, L., Liermann, H.-P., Speziale, S., Schulze, K., Buchen, J., Kurnosov, A., and Marquardt, H.
- Abstract
Cubic CaSiO3perovskite is a major phase in subducted oceanic crust, where it forms at a depth of about 550 kilometres from majoritic garnet1,2,28. However, its rheological properties at temperatures and pressures typical of the lower mantle are poorly known. Here we measured the plastic strength of cubic CaSiO3perovskite at pressure and temperature conditions typical for a subducting slab up to a depth of about 1,200 kilometres. In contrast to tetragonal CaSiO3, previously investigated at room temperature3,4, we find that cubic CaSiO3perovskite is a comparably weak phase at the temperatures of the lower mantle. We find that its strength and viscosity are substantially lower than that of bridgmanite and ferropericlase, possibly making cubic CaSiO3perovskite the weakest lower-mantle phase. Our findings suggest that cubic CaSiO3perovskite governs the dynamics of subducting slabs. Weak CaSiO3perovskite further provides a mechanism to separate subducted oceanic crust from the underlying mantle. Depending on the depth of the separation, basaltic crust could accumulate at the boundary between the upper and lower mantle, where cubic CaSiO3perovskite may contribute to the seismically observed regions of low shear-wave velocities in the uppermost lower mantle5,6, or sink to the core–mantle boundary and explain the seismic anomalies associated with large low-shear-velocity provinces beneath Africa and the Pacific7–9.
- Published
- 2022
- Full Text
- View/download PDF
49. Mass-radius relations of rocky exoplanets and the B1-B2 mantle phase transition of ferropericlase (Mg, Fe)O
- Author
-
Sohl, F., Wagner, F.W., Padovan, S., Dubrovinskaia, N., Dubrovinsky, L., and Liermann, H.-P.
- Subjects
transiting exoplanets ,planets ,bulk composition ,mineral phase transitions ,interior structure ,static tides ,photometric light curves - Published
- 2018
50. Evidence for {100}<011> slip in ferropericlase in from high-pressure/high-temperature experiments Earth's lower mantle
- Author
-
Immoor, J., Marquardt, H., Miyagi, L., Lin, F., Speziale, S., Merkel, Sebastien, Buchen, J., Kurnosov, A., Liermann, H. -P., University of Bayreuth, University of Utah, German Research Centre for Geosciences - Helmholtz-Centre Potsdam (GFZ), Unité Matériaux et Transformations - UMR 8207 (UMET), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Deutsches Elektronen-Synchrotron [Hamburg] (DESY), projects 'GeoMaX' under the Emmy-Noether Program of the German Science Foundation [MA4534/3-1], Bavarian Academy of Sciences, CDAC, NSF [EAR-0337006, EAR-1654687], Institut Universitaire de France, program PNP of CNRS/INSU, [MA4534/4-1], and Institut de Chimie du CNRS (INC)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)
- Subjects
lower mantle ,[SDV]Life Sciences [q-bio] ,seismic anisotropy ,rheology ,ferropericlase ,large low shear velocity provinces - Abstract
International audience; Seismic anisotropy in Earth's lowermost mantle, resulting from Crystallographic Preferred Orientation (CPO) of elastically anisotropic minerals, is among the most promising observables to map mantle flow patterns. A quantitative interpretation, however, is hampered by the limited understanding of CPO development in lower mantle minerals at simultaneously high pressures and temperatures. Here, we experimentally determine CPO formation in ferropericlase, one of the elastically most anisotropic deep mantle phases, at pressures of the lower mantle and temperatures of up to 1400 K using a novel experimental setup. Our data reveal a significant contribution of slip on (100) to ferropericlase CPO in the deep lower mantle, contradicting previous inferences based on experimental work at lower mantle pressures but room temperature. We use our results along with a geodynamic model to show that deformed ferropericlase produces strong shear wave anisotropy in the lowermost mantle, where horizontally polarized shear waves are faster than vertically polarized shear waves, consistent with seismic observations. We find that ferropericlase alone can produce the observed seismic shear wave splitting in D" in regions of downwelling, which may be further enhanced by post-perovskite. Our model further shows that the interplay between ferropericlase (causing VSH > Vsv) and bridgmanite (causing Vsv > VSH) CPO can produce a more complex anisotropy patterns as observed in regions of upwelling at the margin of the African Large Low Shear Velocity Province.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.