1. Enable biomass-derived alcohols mediated alkylation and transfer hydrogenation
- Author
-
Xixi Liu, Liang Huang, Yuandie Ma, Guoqiang She, Peng Zhou, Liangfang Zhu, and Zehui Zhang
- Subjects
Science - Abstract
Abstract A single-atom catalyst with generally regarded inert Zn–N4 motifs derived from ZIF-8 is unexpectedly efficient for the activation of alcohols, enabling alcohol-mediated alkylation and transfer hydrogenation. C-alkylation of nitriles, ketones, alcohols, N-heterocycles, amides, keto acids, and esters, and N-alkylation of amines and amides all go smoothly with the developed method. Taking the α-alkylation of nitriles with alcohols as an example, the α-alkylation starts from the (1) nitrogen-doped carbon support catalyzed dehydrogenation of alcohols into aldehydes, which further condensed with nitriles to give vinyl nitriles, followed by (2) transfer hydrogenation of C=C bonds in vinyl nitriles on Zn–N4 sites. The experimental results and DFT calculations reveal that the Lewis acidic Zn-N4 sites promote step (2) by activating the alcohols. This is the first example of highly efficient single-atom catalysts for various organic transformations with biomass-derived alcohols as the alkylating reagents and hydrogen donors.
- Published
- 2024
- Full Text
- View/download PDF