20 results on '"Laurent, Orgogozo"'
Search Results
2. Permafrost modelling with OpenFOAM®: New advancements of the permaFoam solver.
- Author
-
Laurent Orgogozo, Thibault Xavier, H. Oulbani, and Christophe Grenier
- Published
- 2023
- Full Text
- View/download PDF
3. RichardsFoam3: A new version of RichardsFoam for continental surfaces hydrogeology modelling.
- Author
-
Laurent Orgogozo
- Published
- 2022
- Full Text
- View/download PDF
4. Remote Sensing Based Land Cover Map of Watersheds in the Swedish Arctics: Study of Spatial and Temporal Variabilities of Land Cover
- Author
-
Yves AUDA Auda, Erik J. Lundin, David Gustafsson, Oleg S. Pokrovsky, Simon Cazaurang, and Laurent Orgogozo
- Abstract
A land cover map of two arctic catchments, nearby the Abisko Scientific Research Station, was obtained from a classification of a Sentinel-2 satellite image and a ground survey performed in July 2022. The two contiguous catchments, Miellajokka and Stordalen, are covered by various ecotypes, from boreal forest to alpine tundra and peatland. The Random Forest algorithm correctly identified 83% of polygon pixels reserved for testing. The developed workflow relied solely on open source software and acquired ground observations. Space organization was directed by the altitude as shown by the intersection of the land cover with the topography. Comparison between this new land cover map and previous ones based on data acquired between 2008 and 2011 demonstrates some trends of vegetation cover evolution in response to climate change in the considered area. The potential applications in terms of permafrost modeling (hiperborea.omp.eu) are finally discussed.
- Published
- 2023
- Full Text
- View/download PDF
5. Numerical investigation of evapotranspiration processes in a forested watershed of Central Siberia.
- Author
-
Laurent Orgogozo, Prokushkin Prokushkin, Oleg S. Pokrovsky, Christophe Grenier, Michel Quintard, Jerome Viers, and Stéphane Audry
- Published
- 2018
6. An open source massively parallel solver for Richards equation: Mechanistic modelling of water fluxes at the watershed scale.
- Author
-
Laurent Orgogozo, Nicolas Renon, Cyprien Soulaine, Florent Hénon, Sat Kumar Tomer, David Labat, Oleg S. Pokrovsky, Muddu Sekhar, Rachid Ababou, and Michel Quintard
- Published
- 2018
7. Boreal Mosses and Lichens
- Author
-
Laurent Orgogozo, Yohan Davit, Manuel Marcoux, and Michel Quintard
- Published
- 2023
- Full Text
- View/download PDF
8. Numerical Assessment of Morphological and Hydraulic Properties of Moss, Lichen and Peat from a Permafrost Peatland
- Author
-
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, Laurent Orgogozo, Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Tomsk State University [Tomsk], N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch (FECIAR UrB RAS ), Russian Academy of Sciences - Chernogolovka, and ANR-19-CE46-0003,HiPerBorea,Calul haute performance pour la quantification des impacts du changement climatique sur les régions boréales(2019)
- Subjects
[PHYS]Physics [physics] ,Peatland ,[SDU]Sciences of the Universe [physics] ,Hydraulic conductivity ,[SDE]Environmental Sciences ,Porous media ,Permafrost ,General Earth and Planetary Sciences ,Lichen ,[INFO]Computer Science [cs] ,Computational fluid dynamics ,Moss ,General Environmental Science - Abstract
Due to its insulating and draining role, assessing ground vegetation cover properties is important for high-resolution hydrological modeling of permafrost regions. In this study, morphological and effective hydraulic properties of Western Siberian Lowland ground vegetation samples (lichens, Sphagnum mosses, peat) are numerically studied based on tomography scans. Porosity is estimated through a void voxels counting algorithm, showing the existence of representative elementary volumes (REVs) of porosity for most samples. Then, two methods are used to estimate hydraulic conductivity depending on the sample's homogeneity. For homogeneous samples, direct numerical simulations of a single-phase flow are performed, leading to a definition of hydraulic conductivity related to a REV, which is larger than those obtained for porosity. For heterogeneous samples, no adequate REV may be defined. To bypass this issue, a pore network representation is created from computerized scans. Morphological and hydraulic properties are then estimated through this simplified representation. Both methods converged on similar results for porosity. Some discrepancies are observed for a specific surface area. Hydraulic conductivity fluctuates by 2 orders of magnitude, depending on the method used. Porosity values are in line with previous values found in the literature, showing that arctic cryptogamic cover can be considered an open and well-connected porous medium (over 99 % of overall porosity is open porosity). Meanwhile, digitally estimated hydraulic conductivity is higher compared to previously obtained results based on field and laboratory experiments. However, the uncertainty is less than in experimental studies available in the literature. Therefore, biological and sampling artifacts are predominant over numerical biases. This could be related to compressibility effects occurring during field or laboratory measurements. These numerical methods lay a solid foundation for interpreting the homogeneity of any type of sample and processing some quantitative properties' assessment, either with image processing or with a pore network model. The main observed limitation is the input data quality (e.g., the tomographic scans' resolution) and its pre-processing scheme. Thus, some supplementary studies are compulsory for assessing syn-sampling and syn-measurement perturbations in experimentally estimated, effective hydraulic properties of such a biological porous medium.
- Published
- 2022
- Full Text
- View/download PDF
9. Supplementary material to 'Numerical Assessment of Morphological and Hydraulic Properties of Moss, Lichen and Peat from a Permafrost Peatland'
- Author
-
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, and Laurent Orgogozo
- Published
- 2022
- Full Text
- View/download PDF
10. Arctic vegetation cover seen as a porous media : Numerical assessment of hydraulic and thermal properties of Sphagnum moss, lichen and peat from Western Siberia
- Author
-
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, and Laurent Orgogozo
- Abstract
Sphagnum moss, lichen and peat are widely present in arctic regions, covering millions of km² in permafrost-dominated regions. This multi-component low vegetation strata plays a key role in surfaces fluxes in these areas, as they are the most widespread interface between the atmosphere and the geosphere. Therefore, characterizing their transfer properties such as hydraulic and thermal conductivities is crucial for climate change impacts forecasting in arctic regions. In this work, 12 samples were collected in a discontinuous permafrost arctic area (Khanymey Research Station, Russian Federation) and dried to ensure their conservation. Collected samples have been digitally reconstructed by X-ray scanning. After having assessed morphological and hydraulic properties using numerical analysis of the obtained 3D digital tomographies (Cazaurang et al, submitted), we aim here at developing and using both experimental and numerical methodologies to characterize thermal properties of these samples of Sphagnum, lichen and peat. This new study consist in comparisons of numerically and experimentally estimated thermal properties for contributing to the existing knowledge on Sphagnum, lichen and peat transfer properties. Experiments consist of a steady-state thermal conductivity estimation using a hot plate source on real arctic vegetation cover samples. For this purpose, samples are placed in a confined thermal atmosphere and a constant heat flux is applied at sample base. Thermal conductivity is then retrieved with the resolution of Fourier’s heat conduction law. Similarly, numerical computations are conducted on the same digital reconstructions than those used for hydraulic properties determination. Simulations consist of a numerical reproduction of previously described experiments, allowing to strengthen the analysis of the experimental data. Additionally, the definition of representative elementary volumes of the studied samples is also undertaken using the numerical results.Compiling these assessments of transfer properties will represent essential information to simulate the dynamics of the permafrost underneath the arctic bryophytic layers with a devoted catchment-scale permafrost models. For instance in the framework of the HiPerBorea project (hiperborea.omp.eu), this approach will be used to forecast the impacts of climate warming on boreal permafrost-dominated catchments.
- Published
- 2022
- Full Text
- View/download PDF
11. Fractionation of Organic C, Nutrients, Metals And Bacteria In Peat Porewater And Ice After Freezing And Thawing
- Author
-
Sergey Yu Morgalev, Artem G. Lim, Tamara G. Morgaleva, Yuri N. Morgalev, Rinat M. Manasypov, Daria Kuzmina, Liudmila S. Shirokova, Laurent Orgogozo, Sergey V. Loiko, and Oleg S. Pokrovsky
- Subjects
замерзание ,микроорганизмы ,оттаивание ,токсичные вещества ,Health, Toxicology and Mutagenesis ,поровые воды ,торф ,Environmental Chemistry ,General Medicine ,основные микроэлементы ,питательные вещества ,Pollution - Abstract
To better understand freezing - thawing cycles operating in peat soils of permafrost landscapes, we experimentally modelled bi-directional freezing and thawing of the three sections of 90-cm long peat core collected from a discontinuous permafrost zone in western Siberia. We measured translocation of microorganisms and changes in porewater chemistry (pH, UV absorbance, dissolved organic carbon (DOC), and major and trace element concentrations) after thawing and two-way freezing of peat cores. We demonstrate that bi-directional freezing and thawing of a peat core is capable of strongly modifying the vertical pattern of bacteria, DOC, nutrients, and trace element concentrations. Sizeable enrichment (a factor of 2 to 5) of DOC, macro- (P, K, Ca) and micro-nutrients (Ni, Mn, Co, Rb, B) and some low-mobile trace elements in several horizons of ice and peat porewater after freeze/thaw experiment may stem from physical disintegration of peat particles, leaching of peat constituents and opening of isolated (non-connected) pores during freezing front migration. However, due to the appearance of multiple maxima of element concentration after a freeze-thaw event, the use of peat ice chemical composition as environmental archive for paleo-reconstructions is unwarranted.
- Published
- 2022
- Full Text
- View/download PDF
12. Fractionation of organic C, nutrients, metals and bacteria in peat porewater and ice after freezing and thawing
- Author
-
Sergey Yu, Morgalev, Artem G, Lim, Tamara G, Morgaleva, Yuri N, Morgalev, Rinat M, Manasypov, Daria, Kuzmina, Liudmila S, Shirokova, Laurent, Orgogozo, Sergey V, Loiko, and Oleg S, Pokrovsky
- Abstract
To better understand freezing - thawing cycles operating in peat soils of permafrost landscapes, we experimentally modelled bi-directional freezing and thawing of peat collected from a discontinuous permafrost zone in western Siberia. We measured translocation of microorganisms and changes in porewater chemistry (pH, UV absorbance, dissolved organic carbon (DOC), and major and trace element concentrations) after thawing and two-way freezing of the three sections of 90-cm-long peat core. We demonstrate that bi-directional freezing and thawing of a peat core is capable of strongly modifying the vertical pattern of bacteria, DOC, nutrients, and trace element concentrations. Sizeable enrichment (a factor of 2 to 5) of DOC, macro- (P, K, Ca) and micro-nutrients (Ni, Mn, Co, Rb, B), and some low-mobile trace elements in several horizons of ice and peat porewater after freeze/thaw experiment may stem from physical disintegration of peat particles, leaching of peat constituents, and opening of isolated (non-connected) pores during freezing front migration. However, due to the appearance of multiple maxima of element concentration after a freeze-thaw event, the use of peat ice chemical composition as environmental archive for paleo-reconstructions is unwarranted.
- Published
- 2021
13. RichardsFoam2: A new version of RichardsFoam devoted to the modelling of the vadose zone.
- Author
-
Laurent Orgogozo
- Published
- 2015
- Full Text
- View/download PDF
14. The fate of Cu pesticides in vineyard soils: A case study using δ65Cu isotope ratios and EPR analysis
- Author
-
Sophie Sobanska, Hervé Vezin, José Darrozes, Jérôme Viers, Eva Schreck, Pierre Courjault-Radé, Priscia Oliva, Laurent Orgogozo, Simon Blotevogel, Jonathan Prunier, Stéphane Audry, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), and Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille Institut (CLIL)
- Subjects
Kinetic extractions ,Soil test ,Bulk soil ,chemistry.chemical_element ,010501 environmental sciences ,010502 geochemistry & geophysics ,complex mixtures ,01 natural sciences ,Vineyard ,Geochemistry and Petrology ,[CHIM]Chemical Sciences ,Vineyard soils ,0105 earth and related environmental sciences ,Cambisol ,Isotope ,Electron Paramagnetic Resonance (EPR) ,Geology ,15. Life on land ,Soil type ,Copper ,chemistry ,Environmental chemistry ,[SDE]Environmental Sciences ,Soil water ,Isotope fractionation - Abstract
International audience; Copper (Cu) based pesticides are widely used in viticulture and are permitted in organic viticulture. Due to its extensive long term use, Cu accumulates in vineyard soils and ecotoxicological implications are growing. In this study, the cycling of Cu based pesticides was investigated in vineyard environments using copper mass balance, electron paramagnetic resonance (EPR) spectroscopy and Cu isotope analyses. Different soils (i.e. vertic cambisol and calcaric cambisol) from the Soave vineyard (Italy) were studied. Kinetic extractions were performed on soil samples using Na3-citrate to assess the bioavailable Cu fraction. Results show that isotope ratios of pesticides depend on Cu speciation and their manufacturing date, covering a large range of isotope ratios (δ65Cu from −0.49 ± 0.05‰ to 0.89 ± 0.01‰) making it difficult to trace sources of Cu in soils. Mass balance calculations based on Ti as invariant element permitted to put in evidence large excess Cu stocks in both studied soils. Excess Cu is transported to depth with approximately the same apparent rate (0.0092 m yr− 1) in both soils, faster than formerly reported in literature. A substantial amount of Cu was missing from calcaric cambisols (6 to 48%) when compared to vertic cambisols, implying a relative loss of Cu from such soils via the soil solution. In bulk soils, there are slight but significant differences in mean Cu isotope ratios depending on soil type (δ65Cu from 0.28 vs 0.18‰ in vertic and calcaric soils respectively), illustrating the loss of heavy Cu from carbonated soils. EPR analysis confirms a difference in Cu speciation between vertic and carbonate-rich soils, indicating an influence of carbonates on Cu retention besides the role of Cu-organic matter interactions. Kinetic extractions showed that the bioavailable fraction displays isotopically heavier Cu isotopes signature than bulk soil, whatever the soil type.
- Published
- 2018
- Full Text
- View/download PDF
15. Comment on hess-2021-15
- Author
-
Laurent, Orgogozo, primary
- Published
- 2021
- Full Text
- View/download PDF
16. Referee comments of L. Orgogozo for the manuscript “ Understanding the Mass, Momentum and Energy Transfer in the Frozen Soil with Three Levels of Model Complexities” submitted to HESS by L. Yu, Y. Zeng and Z. Su
- Author
-
Laurent, Orgogozo, primary
- Published
- 2020
- Full Text
- View/download PDF
17. Contribution of soil elemental contents and Cu and Sr isotope ratios to the understanding of pedogenetic processes and mechanisms involved in the soil-to-grape transfer (Soave vineyard, Italy)
- Author
-
Giuseppe D. Saldi, Jérôme Viers, Laurent Orgogozo, Eva Schreck, José Darrozes, Simon Blotevogel, Priscia Oliva, Pierre Courjault-Radé, Stéphane Audry, Géosciences Environnement Toulouse (GET), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mineral nutrition ,Soil Science ,010501 environmental sciences ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,01 natural sciences ,Vineyard ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Vineyard soil ,0105 earth and related environmental sciences ,2. Zero hunger ,Radiogenic nuclide ,Chemistry ,Soil chemistry ,Soil classification ,04 agricultural and veterinary sciences ,[CHIM.MATE]Chemical Sciences/Material chemistry ,15. Life on land ,Soil type ,Element transfers ,Soil formation ,Isotopes of carbon ,Environmental chemistry ,Soil water ,[SDE]Environmental Sciences ,040103 agronomy & agriculture ,Sr and Cu isotopes ,0401 agriculture, forestry, and fisheries ,Calcareous - Abstract
International audience; The effect of soil on wine composition and flavor is controversially discussed in viticulture. Mineral nutrition of the grapevine is one possibility for an influence of soil chemistry on winemaking. However, effects of soil chemistry are difficult to isolate from other physical and biological factors.Here two winegrowing plots in the Soave region (Italy) were investigated, lying side by side on contrasted soil types. Factors that influenced soil formation and characterize soil chemistry and mineralogy were determined. The influence of soil type on the elemental composition (Mg, Al, P, S, K, Ca, Mn, Fe, Cu, Zn, Sr, Mo and Ba) of leaves and grapes was studied. Carbon isotope ratios were measured to evaluate water stress. Radiogenic Sr and stable Cu isotope ratios were studied to identify the influence of different bedrocks and better understand the mechanisms involved in the soil-to-grape continuum.Even though the morphology of soils is different, chemical characteristics are similar in both vineyard plots. Nevertheless, Sr isotope ratios of horizons of both soils show influence of different bedrocks on their genesis. The composition of grapevine plants is similar between both plots even though there is a tendency for higher elemental contents on more calcareous soil. Finally, isotope ratios show that different mechanisms control Cu and Sr in plant: Cu seems to be controlled by regulation mechanisms of the plants whereas Sr is absorbed in ratios similar to the soil, reflecting the different geological origins.
- Published
- 2019
- Full Text
- View/download PDF
18. Water and energy transfer modeling in a permafrost‐dominated, forested catchment of Central Siberia: the key role of rooting depth
- Author
-
Anatoly S. Prokushkin, Laurent Orgogozo, Oleg S. Pokrovsky, Jérôme Viers, Stéphane Audry, Michel Quintard, Christophe Grenier, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences (SB RAS), Tomsk State University [Tomsk], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation Hydrologique (HYDRO), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire des Mécanismes et Transfert en Géologie (LMTG), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National d'Études Spatiales - CNES (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut de Recherche pour le Développement - IRD (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université de Versailles Saint-Quentin-en-Yvelines -UVSQ (FRANCE), Bureau de Recherches Géologiques et Minières - BRGM (FRANCE), V. N. Sukachev Institute of Forest (RUSSIA), Tomsk State University - TSU (RUSSIA), Laboratoire des Sciences du Climat et de l'Environnement - LSCE (Gif-sur-Yvette, France), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), and Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP)
- Subjects
Biogeochemical cycle ,Watershed ,010504 meteorology & atmospheric sciences ,Mécanique des fluides ,[SDE.MCG]Environmental Sciences/Global Changes ,0207 environmental engineering ,Drainage basin ,Active layer dynamics ,Permafrost ,02 engineering and technology ,Atmospheric sciences ,01 natural sciences ,Hydrology (agriculture) ,Evapotranspiration ,Fluid dynamics ,ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING/I.6.5: Model Development ,OpenFOAM ,OpenFOAM® ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,020701 environmental engineering ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Earth-Surface Processes ,geography ,geography.geographical_feature_category ,Permafrost modeling ,[SDE.IE]Environmental Sciences/Environmental Engineering ,15. Life on land ,cryohydrogeology modeling ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,13. Climate action ,Soil water ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,Massively parallel computation ,Cryohydrogeology modelling ,Geology - Abstract
International audience; In order to quantify the impact of evapotranspiration phenomena on active layer dynamics in a permafrost-dominated forested watershed in Central Siberia, we performed a numerical cryohydrological study of water and energy transfer using a new open source cryohydrogeology simulator, with two innovative features: the spatially distributed, mechanistic handling of evapotranspiration and the inclusion of the developed numerical tool in the high performance computing tool box for numerical simulation of fluid dynamics OpenFOAM®. In this region, the heterogeneity of solar exposure leads to strong contrasts in vegetation cover, which constitute the main source of variability of hydrological conditions at the landscape scale. The uncalibrated numerical results reasonably reproduce the measured soil temperature profiles and the dynamics of infiltrated waters revealed by previous biogeochemical studies. The impacts of the thermo-hydrological processes on the water fluxes from the soils to the stream are discussed through comparison between numerical results and field data. The impact of evapotranspiration on water fluxes is studied numerically, which highlights a strong sensitivity to the variability of rooting depth and corresponding evapotranspiration at the slopes of different aspects in the catchment.
- Published
- 2019
- Full Text
- View/download PDF
19. Groundwater flow and heat transport for systems undergoing freeze-thaw : Intercomparison of numerical simulators for 2D test cases
- Author
-
N. Collier, Andrew Frampton, Agnès Rivière, Johann Holmén, Emmanuel Mouche, John Molson, Barret L. Kurylyk, Ethan T. Coon, Jennifer M. Frederick, René Therrien, Patrik Vidstrand, Jan Olof Selroos, Clifford I. Voss, Romain Pannetier, Nicolas Roux, Christophe Grenier, Quentin Chanzy, Laurent Orgogozo, Samuel Kokh, Johanna Scheidegger, H. Anbergen, François Costard, Wolfram Rühaak, Victor F. Bense, Michel Ferry, Julio Gonçalvès, Anne Jost, Jeffrey M. McKenzie, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation Hydrologique (HYDRO), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), APS Antriebs-, Prüf- und Steuertechnik GmbH, School of Environmental Sciences [Norwich], University of East Anglia [Norwich] (UEA), ENS Cachan, Département Génie Mécanique, Université Paris-Saclay, Cachan, France, Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, Climate Change Science Institute [Oak Ridge] (CCSI), UT-Battelle, LLC-UT-Battelle, LLC, Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), MFRDC, 6 rue de la Perche 44700 Orvault, France, Department of Physical Geography and Quaternary Geology, Stockholm University, Division of Hydrologic Sciences, Desert Research Institute (DRI), Structure et fonctionnement des systèmes hydriques continentaux (SISYPHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Golder Associates Kapellgränd 7, 11625 Stockholm, Sweden, Laboratoire d'Etudes Thermiques des Réacteurs (LETR), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre dor Water Resources Studies [Halifax] (CWRS), Dalhousie University [Halifax], Department of Civil and Resource Engineering [Halifax], Department of Earth and Planetary Sciences [Montréal] (EPS), McGill University = Université McGill [Montréal, Canada], Université Laval [Québec] (ULaval), Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de biologie et modélisation de la cellule (LBMC UMR 5239), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de Géosciences (GEOSCIENCES), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), British Geological Survey (BGS), Swedish Nuclear Fuel and Waste Management Company, United States Geological Survey [Reston] (USGS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-MINES ParisTech - École nationale supérieure des mines de Paris, Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), MINES ParisTech - École nationale supérieure des mines de Paris, and TU Darmstadt Graduate School of Excellence Energy Science & Engineering
- Subjects
010504 meteorology & atmospheric sciences ,Groundwater flow ,Discretization ,0208 environmental biotechnology ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Permafrost ,02 engineering and technology ,Numerical simulation ,Hydrology and Quantitative Water Management ,01 natural sciences ,Sharp interface problems ,Range (statistics) ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Water Science and Technology ,WIMEK ,Computer simulation ,Thermo-hydrological coupling ,Mechanics ,020801 environmental engineering ,Test case ,Code benchmarking ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,Environmental science ,Temporal discretization ,Groundwater ,Hydrologie en Kwantitatief Waterbeheer - Abstract
In high-elevation, boreal and arctic regions, hydrological processes and associated water bodies can be strongly influenced by the distribution of permafrost. Recent field and modeling studies indicate that a fully-coupled multidimensional thermo-hydraulic approach is required to accurately model the evolution of these permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require verification. This issue is addressed by means of an intercomparison of thirteen numerical codes for two-dimensional test cases with several performance metrics (PMs). These codes comprise a wide range of numerical approaches, spatial and temporal discretization strategies, and computational efficiencies. Results suggest that the codes provide robust results for the test cases considered and that minor discrepancies are explained by computational precision. However, larger discrepancies are observed for some PMs resulting from differences in the governing equations, discretization issues, or in the freezing curve used by some codes.
- Published
- 2018
- Full Text
- View/download PDF
20. The InterFrost benchmark of Thermo-Hydraulic codes for cold regions hydrology - first inter-comparison results
- Author
-
Christophe Grenier, Nicolas Roux, Hauke Anbergen, Collier Nathaniel, Costard, F., Ferrry Michel, Andrew Frampton, Jennifer Frederick, Johan Holmen, Anne Jost, Samuel Kokh, Jeffrey Mckenzie, John Molson, Laurent Orgogozo, Agnès Rivière, Jan-Olof Selroos, Rene Therrien, Patrik Vidstrand, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Frank GeoConsult GmbH, Hamburg, Germany, Climate Change Science Institute [Oak Ridge] (CCSI), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), MFRDC, 6 rue de la Perche 44700 Orvault, France, Department of Physical Geography & Quaternary Geology, Stockholm University, Division of Hydrologic Sciences, Desert Research Institute (DRI), Golder Associates Kapellgränd 7, 11625 Stockholm, Sweden, Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Department of Earth and Planetary Sciences [Montréal] (EPS), McGill University = Université McGill [Montréal, Canada], Université Laval [Québec] (ULaval), Département de géologie et de génie géologique, Université Laval, 1065 avenue de la Médecine, Québec, Canada, G1V, Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre de Géosciences (GEOSCIENCES), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Swedish Nuclear Fuel and Waste Management Company, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), and MINES ParisTech - École nationale supérieure des mines de Paris
- Subjects
[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
International audience; The impacts of climate change in boreal regions has received considerable attention recently due to the warming trends that have been experienced in recent decades and are expected to intensify in the future. Large portions of these regions, corresponding to permafrost areas, are covered by water bodies (lakes, rivers) that interact with the surrounding permafrost. For example, the thermal state of the surrounding soil influences the energy and water budget of the surface water bodies. Also, these water bodies generate taliks (unfrozen zones below) that disturb the thermal regimes of permafrost and may play a key role in the context of climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model the past and future evolution of landscapes, rivers, lakes and associated groundwater systems in a changing climate. However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, and the lack of study can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. Numerical approaches can only be validated against analytical solutions for a purely thermic 1D equation with phase change (e.g. Neumann, Lunardini). When it comes to the coupled TH system (coupling two highly non-linear equations), the only possible approach is to compare the results from different codes to provided test cases and/or to have controlled experiments for validation. Such inter-code comparisons can propel discussions to try to improve code performances. A benchmark exercise was initialized in 2014 with a kick-off meeting in Paris in November. Participants from USA, Canada, Germany, Sweden and France convened, representing altogether 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones. They range from simpler, purely thermal cases (benchmark T1) to more complex, coupled 2D TH cases (benchmarks TH1, TH2, and TH3). Some experimental cases conducted in cold room complement the validation approach. A web site hosted by LSCE (Laboratoire des Sciences du Climat et de l'Environnement) is an interaction platform for the participants and hosts the test cases database at the following address: https://wiki.lsce.ipsl.fr/interfrost. The results of the first stage of the benchmark exercise will be presented. We will mainly focus on the inter-comparison of participant results for the coupled cases (TH1, TH2 & TH3). Further perspectives of the exercise will also be presented. Extensions to more complex physical conditions (e.g. unsaturated conditions and geometrical deformations) are contemplated. In addition, 1D vertical cases of interest to the Climate Modeling community will be proposed. Keywords: Permafrost; Numerical modeling; River-soil interaction; Arctic systems; soil freeze-thaw
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.