1. Evaluation of Drug Blood-Brain-Barrier Permeability Using a Microfluidic Chip
- Author
-
Jung Yoon Yang, Dae-Seop Shin, Moonkyu Jeong, Seong Soon Kim, Ha Neul Jeong, Byung Hoi Lee, Kyu-Seok Hwang, Yuji Son, Hyeon-Cheol Jeong, Chi-Hoon Choi, Kyeong-Ryoon Lee, and Myung Ae Bae
- Subjects
BBB ,microfluidic chip ,physiologically based pharmacokinetic modeling ,Pharmacy and materia medica ,RS1-441 - Abstract
The blood-brain-barrier (BBB) is made up of blood vessels whose permeability enables the passage of some compounds. A predictive model of BBB permeability is important in the early stages of drug development. The predicted BBB permeabilities of drugs have been confirmed using a variety of in vitro methods to reduce the quantities of drug candidates needed in preclinical and clinical trials. Most prior studies have relied on animal or cell-culture models, which do not fully recapitulate the human BBB. The development of microfluidic models of human-derived BBB cells could address this issue. We analyzed a model for predicting BBB permeability using the Emulate BBB-on-a-chip machine. Ten compounds were evaluated, and their permeabilities were estimated. Our study demonstrated that the permeability trends of ten compounds in our microfluidic-based system resembled those observed in previous animal and cell-based experiments. Furthermore, we established a general correlation between the partition coefficient (Kp) and the apparent permeability (Papp). In conclusion, we introduced a new paradigm for predicting BBB permeability using microfluidic-based systems.
- Published
- 2024
- Full Text
- View/download PDF