1. Isoflurane Favorably Modulates Guanosine Triphosphate Cyclohydrolase-1 and Endothelial Nitric Oxide Synthase during Myocardial Ischemia and Reperfusion Injury in Rats
- Author
-
Judy R. Kersten, Ines Baotic, Jeanette Vasquez-Vivar, Shaan Sudhakaran, Zhi-Dong Ge, David C. Warltier, Jesse Procknow, and Dorothee Weihrauch
- Subjects
Male ,Myocardial ischemia ,Nitric Oxide Synthase Type III ,Myocardial Ischemia ,Myocardial Reperfusion Injury ,Guanosine triphosphate ,Pharmacology ,Article ,Nitric oxide ,chemistry.chemical_compound ,Random Allocation ,medicine ,Animals ,Myocardial infarction ,Rats, Wistar ,GTP Cyclohydrolase ,chemistry.chemical_classification ,Isoflurane ,business.industry ,medicine.disease ,Rats ,Anesthesiology and Pain Medicine ,Enzyme ,chemistry ,Anesthetics, Inhalation ,business ,Reperfusion injury ,medicine.drug - Abstract
Background: The authors investigated the hypothesis that isoflurane modulates nitric oxide (NO) synthesis and protection against myocardial infarction through time-dependent changes in expression of key NO regulatory proteins, guanosine triphosphate cyclohydrolase (GTPCH)-1, the rate-limiting enzyme involved in the biosynthesis of tetrahydrobiopterin and endothelial nitric oxide synthase (eNOS). Methods: Myocardial infarct size, NO production (ozone-mediated chemiluminescence), GTPCH-1, and eNOS expression (real-time reverse transcriptase polymerase chain reaction and western blotting) were measured in male Wistar rats with or without anesthetic preconditioning (APC; 1.0 minimum alveolar concentration isoflurane for 30 min) and in the presence or absence of an inhibitor of GTPCH-1, 2,4-diamino-6-hydroxypyrimidine. Results: NO−2 production (158 ± 16 and 150 ± 13 pmol/mg protein at baseline in control and APC groups, respectively) was significantly (P < 0.05) increased 1.5 ± 0.1 and 1.4 ± 0.1 fold by APC (n = 4) at 60 and 90 min of reperfusion, respectively, concomitantly, with increased expression of GTPCH-1 (1.3 ± 0.3 fold; n = 5) and eNOS (1.3 ± 0.2 fold; n = 5). In contrast, total NO (NO−2 and NO−3) was decreased after reperfusion in control experiments. Myocardial infarct size was decreased (43 ± 2% of the area at risk for infarction; n = 6) by APC compared with control experiments (57 ± 1%; n = 6). 2, 4-Diamino-6-hydroxypyrimidine decreased total NO production at baseline (221 ± 25 and 175 ± 31 pmol/mg protein at baseline in control and APC groups, respectively), abolished isoflurane-induced increases in NO at reperfusion, and prevented reductions of myocardial infarct size by APC (60 ± 2%; n = 6). Conclusion: APC favorably modulated a NO biosynthetic pathway by up-regulating GTPCH-1 and eNOS, and this action contributed to protection of myocardium against ischemia and reperfusion injury.
- Published
- 2015