William T. Pike, Fabio Cammarano, Ralph D. Lorenz, Jennifer M. Jackson, Sharon Kedar, Gabriel Tobie, Christophe Sotin, Steven D. Vance, Bruce Banerdt, Simon Stähler, Bruce G. Bills, Mark P. Panning, Shunichi Kamata, Hsin-Hua Huang, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institute of Geophysics [ETH Zürich], Department of Earth Sciences [Swiss Federal Institute of Technology - ETH Zürich] (D-ERDW), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Dipartimento di Scienze Geologiche [Roma TRE], Università degli Studi Roma Tre, NASA, Jet Prop Lab, CALTECH, 4800 Oak Grove Dr, Pasadena, CA 91109 USA, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Electrical and Electronic Engineering [London] (DEEE), Imperial College London, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, Vance, Steven D., Panning, Mark P., Stähler, Simon, Cammarano, Fabio, Bills, Bruce G., Tobie, Gabriel, Kamata, Shunichi, Kedar, Sharon, Sotin, Christophe, Pike, William T., Lorenz, Ralph, Huang, Hsin-Hua, Jackson, Jennifer M., and Banerdt, Bruce
Geophysical measurements can reveal the structures and thermal states of icy ocean worlds. The interior density, temperature, sound speed, and electrical conductivity thus characterize their habitability. We explore the variability and correlation of these parameters using 1-D internal structure models. We invoke thermodynamic consistency using available thermodynamics of aqueous MgSO_4, NaCl (as seawater), and NH_3; pure water ice phases I, II, III, V, and VI; silicates; and any metallic core that may be present. Model results suggest, for Europa, that combinations of geophysical parameters might be used to distinguish an oxidized ocean dominated by MgSO_4 from a more reduced ocean dominated by NaCl. In contrast with Jupiter's icy ocean moons, Titan and Enceladus have low-density rocky interiors, with minimal or no metallic core. The low-density rocky core of Enceladus may comprise hydrated minerals or anhydrous minerals with high porosity. Cassini gravity data for Titan indicate a high tidal potential Love number (k_2 > 0.6), which requires a dense internal ocean (ρ_(ocean) >1,200 kg m^(−3)) and icy lithosphere thinner than 100 km. In that case, Titan may have little or no high-pressure ice, or a surprisingly deep water-rock interface more than 500 km below the surface, covered only by ice VI. Ganymede's water-rock interface is the deepest among known ocean worlds, at around 800 km. Its ocean may contain multiple phases of high-pressure ice, which will become buoyant if the ocean is sufficiently salty. Callisto's interior structure may be intermediate to those of Titan and Europa, with a water-rock interface 250 km below the surface covered by ice V but not ice VI.