15 results on '"Hornstra H"'
Search Results
2. Diving into dual functionality: Swim bladder muscles in lionfish for buoyancy and sonic capabilities.
- Author
-
Parmentier E, Herrel A, Banse M, Hornstra H, Bertucci F, and Lecchini D
- Subjects
- Animals, Muscles anatomy & histology, Fishes anatomy & histology, Sound, Urinary Bladder, Perciformes anatomy & histology
- Abstract
Although the primary function of the swim bladder is buoyancy, it is also involved in hearing, and it can be associated with sonic muscles for voluntary sound production. The use of the swim bladder and associated muscles in sound production could be an exaptation since this is not its first function. We however lack models showing that the same muscles can be used in both movement and sound production. In this study, we investigate the functions of the muscles associated with the swim bladder in different Pteroinae (lionfish) species. Our results indicate that Pterois volitans, P. radiata and Dendrochirus zebra are able to produce long low-frequency hums when disturbed. The deliberate movements of the fin spines during sound production suggest that these sounds may serve as aposematic signals. In P. volitans and P. radiata, hums can be punctuated by intermittent louder pulses called knocks. Analysis of sonic features, morphology, electromyography and histology strongly suggest that these sounds are most likely produced by muscles closely associated with the swim bladder. These muscles originate from the neurocranium and insert on the posterior part of the swim bladder. Additionally, cineradiography supports the hypothesis that these same muscles are involved in altering the swim bladder's length and angle, thereby influencing the pitch of the fish body and participating in manoeuvring and locomotion movements. Fast contraction of the muscle should be related to sound production whereas sustained contractions allows modifications in swim bladder shape and body pitch., (© 2023 Anatomical Society.)
- Published
- 2024
- Full Text
- View/download PDF
3. A local-scale One Health genomic surveillance of Clostridioides difficile demonstrates highly related strains from humans, canines, and the environment.
- Author
-
Williamson CHD, Roe CC, Terriquez J, Hornstra H, Lucero S, Nunnally AE, Vazquez AJ, Vinocur J, Plude C, Nienstadt L, Stone NE, Celona KR, Wagner DM, Keim P, and Sahl JW
- Subjects
- Humans, Animals, Dogs, Clostridioides, Genomics, Clostridioides difficile, Bacterial Toxins genetics, One Health, Clostridium Infections epidemiology, Clostridium Infections veterinary
- Abstract
Although infections caused by Clostridioides difficile have historically been attributed to hospital acquisition, growing evidence supports the role of community acquisition in C. difficile infection (CDI). Symptoms of CDI can range from mild, self-resolving diarrhoea to toxic megacolon, pseudomembranous colitis, and death. In this study, we sampled C. difficile from clinical, environmental, and canine reservoirs in Flagstaff, Arizona, USA, to understand the distribution and transmission of the pathogen in a One Health framework; Flagstaff is a medium-sized, geographically isolated city with a single hospital system, making it an ideal site to characterize genomic overlap between sequenced C. difficile isolates across reservoirs. An analysis of 562 genomes from Flagstaff isolates identified 65 sequence types (STs), with eight STs being found across all three reservoirs and another nine found across two reservoirs. A screen of toxin genes in the pathogenicity locus identified nine STs where all isolates lost the toxin genes needed for CDI manifestation ( tcdB , tcdA ), demonstrating the widespread distribution of non-toxigenic C. difficile (NTCD) isolates in all three reservoirs; 15 NTCD genomes were sequenced from symptomatic, clinical samples, including two from mixed infections that contained both tcdB+ and tcdB - isolates. A comparative single nucleotide polymorphism (SNP) analysis of clinically derived isolates identified 78 genomes falling within clusters separated by ≤2 SNPs, indicating that ~19 % of clinical isolates are associated with potential healthcare-associated transmission clusters; only symptomatic cases were sampled in this study, and we did not sample asymptomatic transmission. Using this same SNP threshold, we identified genomic overlap between canine and soil isolates, as well as putative transmission between environmental and human reservoirs. The core genome of isolates sequenced in this study plus a representative set of public C. difficile genomes ( n =136), was 2690 coding region sequences, which constitutes ~70 % of an individual C. difficile genome; this number is significantly higher than has been published in some other studies, suggesting that genome data quality is important in understanding the minimal number of genes needed by C. difficile . This study demonstrates the close genomic overlap among isolates sampled across reservoirs, which was facilitated by maximizing the genomic search space used for comprehensive identification of potential transmission events. Understanding the distribution of toxigenic and non-toxigenic C. difficile across reservoirs has implications for surveillance sampling strategies, characterizing routes of infections, and implementing mitigation measures to limit human infection.
- Published
- 2023
- Full Text
- View/download PDF
4. NHP BurkPx: A multiplex serodiagnostic bead assay to monitor Burkholderia pseudomallei exposures in non-human primates.
- Author
-
Celona KR, Shannon AB, Sonderegger D, Yi J, Monroy FP, Allender C, Hornstra H, Barnes MB, Didier ES, Bohm RP, Phillippi-Falkenstein K, Sanford D, Keim P, and Settles EW
- Subjects
- Animals, Humans, Antibodies, Bacterial, Antigens, Bacterial, Primates, Burkholderia pseudomallei, Melioidosis diagnosis, Melioidosis veterinary, Melioidosis epidemiology
- Abstract
Background: Melioidosis is a disease caused by the bacterium Burkholderia pseudomallei, infecting humans and non-human primates (NHP) through contaminated soil or water. World-wide there are an estimated 165,000 human melioidosis cases each year, but recordings of NHP cases are sporadic. Clinical detection of melioidosis in humans is primarily by culturing B. pseudomallei, and there are no standardized detection protocols for NHP. NHP are an important animal model for melioidosis research including clinical trials and development of biodefense countermeasures., Methodology/principle Findings: We evaluated the diagnostic potential of the multiple antigen serological assay, BurkPx, in NHP using two sera sets: (i) 115 B. pseudomallei-challenged serum samples from 80 NHP collected each week post-exposure (n = 52) and at euthanasia (n = 47), and (ii) 126 B. pseudomallei-naïve/negative serum samples. We observed early IgM antibody responses to carbohydrate antigens followed by IgG antibody recognition to multiple B. pseudomallei protein antigens during the second week of infection. B. pseudomallei negative serum samples had low to intermediate antibody cross reactivity to the antigens in this assay. Infection time was predicted as the determining factor in the variation of antibody responses, with 77.67% of variation explained by the first component of the principal component analysis. A multiple antigen model generated a binary prediction metric ([Formula: see text]), which when applied to all data resulted in 100% specificity and 63.48% sensitivity. Removal of week 1 B. pseudomallei challenged serum samples increased the sensitivity of the model to 95%., Conclusion/significance: We employed a previously standardized assay for humans, the BurkPx assay, and assessed its diagnostic potential for detection of B. pseudomallei exposure in NHP. The assay is expected to be useful for surveillance in NHP colonies, in investigations of suspected accidental releases or exposures, and for identifying vaccine correlates of protection., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 Celona et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
5. Development and evaluation of a multiplex serodiagnostic bead assay (BurkPx) for accurate melioidosis diagnosis.
- Author
-
Settles EW, Sonderegger D, Shannon AB, Celona KR, Lederer R, Yi J, Seavey C, Headley K, Mbegbu M, Harvey M, Keener M, Allender C, Hornstra H, Monroy FP, Woerle C, Theobald V, Mayo M, Currie BJ, and Keim P
- Subjects
- Humans, Antibodies, Bacterial, Antigens, Bacterial, Sensitivity and Specificity, Melioidosis microbiology, Burkholderia pseudomallei
- Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is a gram-negative soil bacterium well recognized in Southeast Asia and northern Australia. However, wider and expanding global distribution of B. pseudomallei has been elucidated. Early diagnosis is critical for commencing the specific therapy required to optimize outcome. Serological testing using the indirect hemagglutination (IHA) antibody assay has long been used to augment diagnosis of melioidosis and to monitor progress. However, cross reactivity and prior exposure may complicate the diagnosis of current clinical disease (melioidosis). The goal of our study was to develop and initially evaluate a serology assay (BurkPx) that capitalized upon host response to multiple antigens. Antigens were selected from previous studies for expression/purification and conjugation to microspheres for multiantigen analysis. Selected serum samples from non-melioidosis controls and serial samples from culture-confirmed melioidosis patients were used to characterize the diagnostic power of individual and combined antigens at two times post admission. Multiple variable models were developed to evaluate multivariate antigen reactivity, identify important antigens, and determine sensitivity and specificity for the diagnosis of melioidosis. The final multiplex assay had a diagnostic sensitivity of 90% and specificity of 93%, which was superior to any single antigen in side-by-side comparisons. The sensitivity of the assay started at >85% for the initial serum sample after admission and increased to 94% 21 days later. Weighting antigen contribution to each model indicated that certain antigen contributed to diagnosis more than others, which suggests that the number of antigens in the assay can be decreased. In summation, the BurkPx assay can facilitate the diagnosis of melioidosis and potentially improve on currently available serology assays. Further evaluation is now required in both melioidosis-endemic and non-endemic settings., Competing Interests: The authors have no competing interests., (Copyright: © 2023 Settles et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
6. Identification of novel, cryptic Clostridioides species isolates from environmental samples collected from diverse geographical locations.
- Author
-
Williamson CHD, Stone NE, Nunnally AE, Roe CC, Vazquez AJ, Lucero SA, Hornstra H, Wagner DM, Keim P, Rupnik M, Janezic S, and Sahl JW
- Subjects
- Anti-Bacterial Agents pharmacology, Arizona, Bacterial Proteins genetics, Bacterial Toxins genetics, Clostridioides difficile classification, Clostridioides difficile genetics, Clostridioides difficile isolation & purification, Clostridium Infections epidemiology, Cross Infection, Drug Resistance, Bacterial genetics, Genes, Bacterial genetics, Genome, Bacterial, Genomics, Humans, Phylogeny, Polymorphism, Single Nucleotide, RNA, Ribosomal, 16S, Slovenia, Clostridioides classification, Clostridioides genetics, Clostridioides isolation & purification
- Abstract
Clostridioides difficile is a pathogen often associated with hospital-acquired infection or antimicrobial-induced disease; however, increasing evidence indicates infections can result from community or environmental sources. Most genomic sequencing of C. difficile has focused on clinical strains, although evidence is growing that C. difficile spores are widespread in soil and water in the environment. In this study, we sequenced 38 genomes collected from soil and water isolates in Flagstaff (AZ, USA) and Slovenia in an effort targeted towards environmental surveillance of C. difficile . At the average nucleotide identity (ANI) level, the genomes were divergent to C. difficile at a threshold consistent with different species. A phylogenetic analysis of these divergent genomes together with Clostridioides genomes available in public repositories confirmed the presence of three previously described, cryptic Clostridioide s species and added two additional clades. One of the cryptic species (C-III) was almost entirely composed of Arizona and Slovenia genomes, and contained distinct sub-groups from each region (evidenced by SNP and gene-content differences). A comparative genomics analysis identified multiple unique coding sequences per clade, which can serve as markers for subsequent environmental surveys of these cryptic species. Homologues to the C. difficile toxin genes, tcdA and tcdB , were found in cryptic species genomes, although they were not part of the typical pathogenicity locus observed in C. difficile , and in silico PCR suggested that some would not amplify with widely used PCR diagnostic tests. We also identified gene homologues in the binary toxin cluster, including some present on phage and, for what is believed to be the first time, on a plasmid. All isolates were obtained from environmental samples, so the function and disease potential of these toxin homologues is currently unknown. Enzymatic profiles of a subset of cryptic isolates ( n =5) demonstrated differences, suggesting that these isolates contain substantial metabolic diversity. Antimicrobial resistance (AMR) was observed across a subset of isolates ( n =4), suggesting that AMR mechanisms are intrinsic to the genus, perhaps originating from a shared environmental origin. This study greatly expands our understanding of the genomic diversity of Clostridioides . These results have implications for C. difficile One Health research, for more sensitive C. difficile diagnostics, as well as for understanding the evolutionary history of C. difficile and the development of pathogenesis.
- Published
- 2022
- Full Text
- View/download PDF
7. Pathogen to commensal? Longitudinal within-host population dynamics, evolution, and adaptation during a chronic >16-year Burkholderia pseudomallei infection.
- Author
-
Pearson T, Sahl JW, Hepp CM, Handady K, Hornstra H, Vazquez AJ, Settles E, Mayo M, Kaestli M, Williamson CHD, Price EP, Sarovich DS, Cook JM, Wolken SR, Bowen RA, Tuanyok A, Foster JT, Drees KP, Kidd TJ, Bell SC, Currie BJ, and Keim P
- Subjects
- Animals, Anti-Bacterial Agents administration & dosage, Biological Evolution, Burkholderia pseudomallei classification, Burkholderia pseudomallei genetics, Burkholderia pseudomallei isolation & purification, Chronic Disease therapy, Female, Genome, Bacterial, Humans, Longitudinal Studies, Melioidosis drug therapy, Mice, Mice, Inbred BALB C, Middle Aged, Phylogeny, Symbiosis, Burkholderia pseudomallei physiology, Melioidosis microbiology
- Abstract
Although acute melioidosis is the most common outcome of Burkholderia pseudomallei infection, we have documented a case, P314, where disease severity lessened with time, and the pathogen evolved towards a commensal relationship with the host. In the current study, we used whole-genome sequencing to monitor this long-term symbiotic relationship to better understand B. pseudomallei persistence in P314's sputum despite intensive initial therapeutic regimens. We collected and sequenced 118 B. pseudomallei isolates from P314's airways over a >16-year period, and also sampled the patient's home environment, recovering six closely related B. pseudomallei isolates from the household water system. Using comparative genomics, we identified 126 SNPs in the core genome of the 124 isolates or 162 SNPs/indels when the accessory genome was included. The core SNPs were used to construct a phylogenetic tree, which demonstrated a close relationship between environmental and clinical isolates and detailed within-host evolutionary patterns. The phylogeny had little homoplasy, consistent with a strictly clonal mode of genetic inheritance. Repeated sampling revealed evidence of genetic diversification, but frequent extinctions left only one successful lineage through the first four years and two lineages after that. Overall, the evolution of this population is nonadaptive and best explained by genetic drift. However, some genetic and phenotypic changes are consistent with in situ adaptation. Using a mouse model, P314 isolates caused greatly reduced morbidity and mortality compared to the environmental isolates. Additionally, potentially adaptive phenotypes emerged and included differences in the O-antigen, capsular polysaccharide, motility, and colony morphology. The >13-year co-existence of two long-lived lineages presents interesting hypotheses that can be tested in future studies to provide additional insights into selective pressures, niche differentiation, and microbial adaptation. This unusual melioidosis case presents a rare example of the evolutionary progression towards commensalism by a highly virulent pathogen within a single human host., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
8. Caprine humoral response to Burkholderia pseudomallei antigens during acute melioidosis from aerosol exposure.
- Author
-
Yi J, Simpanya MF, Settles EW, Shannon AB, Hernandez K, Pristo L, Keener ME, Hornstra H, Busch JD, Soffler C, Brett PJ, Currie BJ, Bowen RA, Tuanyok A, and Keim P
- Subjects
- Acute Disease, Aerosols, Animals, Antibodies, Bacterial blood, Blotting, Western, Disease Models, Animal, Enzyme-Linked Immunosorbent Assay, Female, Immunoglobulin G blood, Immunoglobulin M blood, Male, Mass Spectrometry, Melioidosis immunology, Proteomics, Antigens, Bacterial immunology, Bacterial Proteins immunology, Burkholderia pseudomallei, Goats immunology, Immunity, Humoral, Melioidosis veterinary
- Abstract
Burkholderia pseudomallei causes melioidosis, a common source of pneumonia and sepsis in Southeast Asia and Northern Australia that results in high mortality rates. A caprine melioidosis model of aerosol infection that leads to a systemic infection has the potential to characterize the humoral immune response. This could help identify immunogenic proteins for new diagnostics and vaccine candidates. Outbred goats may more accurately mimic human infection, in contrast to the inbred mouse models used to date. B. pseudomallei infection was delivered as an intratracheal aerosol. Antigenic protein profiling was generated from the infecting strain MSHR511. Humoral immune responses were analyzed by ELISA and western blot, and the antigenic proteins were identified by mass spectrometry. Throughout the course of the infection the assay results demonstrated a much greater humoral response with IgG antibodies, in both breadth and quantity, compared to IgM antibodies. Pre-infection sera showed multiple immunogenic proteins already reactive for IgG (7-20) and IgM (0-12) in most of the goats despite no previous exposure to B. pseudomallei. After infection, the number of IgG reactive proteins showed a marked increase as the disease progressed. Early stage infection (day 7) showed immune reaction to chaperone proteins (GroEL, EF-Tu, and DnaK). These three proteins were detected in all serum samples after infection, with GroEL immunogenically dominant. Seven common reactive antigens were selected for further analysis using ELISA. The heat shock protein GroEL1 elicited the strongest goat antibody immune response compared to the other six antigens. Most of the six antigens showed the peak IgM reactivity at day 14, whereas the IgG reactivity increased further as the disease progressed. An overall MSHR511 proteomic comparison between the goat model and human sera showed that many immune reactive proteins are common between humans and goats with melioidosis., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
9. Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development.
- Author
-
Pearson T, Caporaso JG, Yellowhair M, Bokulich NA, Padi M, Roe DJ, Wertheim BC, Linhart M, Martinez JA, Bilagody C, Hornstra H, Alberts DS, Lance P, and Thompson PA
- Subjects
- Aged, Feces microbiology, Female, Humans, Male, Middle Aged, Risk Factors, Adenoma microbiology, Colorectal Neoplasms microbiology, Gastrointestinal Microbiome drug effects, Ursodeoxycholic Acid pharmacology
- Abstract
It has been previously reported that ursodeoxycholic acid (UDCA), a therapeutic bile acid, reduced risk for advanced colorectal adenoma in men but not women. Interactions between the gut microbiome and fecal bile acid composition as a factor in colorectal cancer neoplasia have been postulated but evidence is limited to small cohorts and animal studies. Using banked stool samples collected as part of a phase III randomized clinical trial of UDCA for the prevention of colorectal adenomatous polyps, we compared change in the microbiome composition after a 3-year intervention in a subset of participants randomized to oral UDCA at 8-10 mg/kg of body weight per day (n = 198) or placebo (n = 203). Study participants randomized to UDCA experienced compositional changes in their microbiome that were statistically more similar to other individuals in the UDCA arm than to those in the placebo arm. This reflected a UDCA-associated shift in microbial community composition (P < 0.001), independent of sex, with no evidence of a UDCA effect on microbial richness (P > 0.05). These UDCA-associated shifts in microbial community distance metrics from baseline to end-of-study were not associated with risk of any or advanced adenoma (all P > 0.05) in men or women. Separate analyses of microbial networks revealed an overrepresentation of Faecalibacterium prausnitzii in the post-UDCA arm and an inverse relationship between F prausnitzii and Ruminococcus gnavus. In men who received UDCA, the overrepresentation of F prausnitzii and underrepresentation of R gnavus were more prominent in those with no adenoma recurrence at follow-up compared to men with recurrence. This relationship was not observed in women. Daily UDCA use modestly influences the relative abundance of microbial species in stool and affects the microbial network composition with suggestive evidence for sex-specific effects of UDCA on stool microbial community composition as a modifier of colorectal adenoma risk., (© 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
10. Corrigendum: Comparative pan-genomic analyses of Orientia tsutsugamushi reveal an exceptional model of bacterial evolution driving genomic diversity.
- Author
-
Fleshman A, Mullins K, Sahl J, Hepp C, Nieto N, Wiggins K, Hornstra H, Kelly D, Chan TC, Phetsouvanh R, Dittrich S, Panyanivong P, Paris D, Newton P, Richards A, and Pearson T
- Published
- 2018
- Full Text
- View/download PDF
11. Comparative pan-genomic analyses of Orientia tsutsugamushi reveal an exceptional model of bacterial evolution driving genomic diversity.
- Author
-
Fleshman A, Mullins K, Sahl J, Hepp C, Nieto N, Wiggins K, Hornstra H, Kelly D, Chan TC, Phetsouvanh R, Dittrich S, Panyanivong P, Paris D, Newton P, Richards A, and Pearson T
- Subjects
- Gene Duplication, Gene Transfer, Horizontal, Genomics, Models, Genetic, Orientia tsutsugamushi classification, Phylogeny, Polymorphism, Single Nucleotide, Recombination, Genetic, Evolution, Molecular, Genetic Variation, Genome, Bacterial, Orientia tsutsugamushi genetics
- Abstract
Orientia tsutsugamushi, formerly Rickettsia tsutsugamushi, is an obligate intracellular pathogen that causes scrub typhus, an underdiagnosed acute febrile disease with high morbidity. Scrub typhus is transmitted by the larval stage (chigger) of Leptotrombidium mites and is irregularly distributed across endemic regions of Asia, Australia and islands of the western Pacific Ocean. Previous work to understand population genetics in O. tsutsugamushi has been based on sub-genomic sampling methods and whole-genome characterization of two genomes. In this study, we compared 40 genomes from geographically dispersed areas and confirmed patterns of extensive homologous recombination likely driven by transposons, conjugative elements and repetitive sequences. High rates of lateral gene transfer (LGT) among O. tsutsugamushi genomes appear to have effectively eliminated a detectable clonal frame, but not our ability to infer evolutionary relationships and phylogeographical clustering. Pan-genomic comparisons using 31 082 high-quality bacterial genomes from 253 species suggests that genomic duplication in O. tsutsugamushi is almost unparalleled. Unlike other highly recombinant species where the uptake of exogenous DNA largely drives genomic diversity, the pan-genome of O. tsutsugamushi is driven by duplication and divergence. Extensive gene innovation by duplication is most commonly attributed to plants and animals and, in contrast with LGT, is thought to be only a minor evolutionary mechanism for bacteria. The near unprecedented evolutionary characteristics of O. tsutsugamushi, coupled with extensive intra-specific LGT, expand our present understanding of rapid bacterial evolutionary adaptive mechanisms.
- Published
- 2018
- Full Text
- View/download PDF
12. Effects of binge alcohol exposure on Burkholderia thailandensis-alveolar macrophage interaction.
- Author
-
Jimenez V Jr, Moreno R, Kaufman E, Hornstra H, Settles E, Currie BJ, Keim P, and Monroy FP
- Subjects
- Animals, Binge Drinking metabolism, Cell Line, Cell Survival drug effects, Cell Survival physiology, Dose-Response Relationship, Drug, Macrophages, Alveolar drug effects, Mice, Nitric Oxide metabolism, Burkholderia isolation & purification, Burkholderia Infections metabolism, Ethanol toxicity, Macrophages, Alveolar metabolism, Macrophages, Alveolar microbiology
- Abstract
Alcohol consumption has diverse and well-documented effects on the human immune system and its ability to defend against infective agents. One example is melioidosis, a disease caused by infection with Burkholderia pseudomallei, which is of public health importance in Southeast Asia and Northern Australia, with an expanding global distribution. While B. pseudomallei infections can occur in healthy humans, binge alcohol use is progressively being recognized as a major risk factor. Although binge alcohol consumption has been considered as a risk factor for the development of melioidosis, no experimental studies have investigated the outcomes of alcohol exposure on Burkholderia spp. infection. Therefore, we proposed the use of non-pathogenic B. thailandensis E264 as a useful BSL-1 model system to study the effects of binge alcohol exposure on bacteria and alveolar macrophage interactions. The MH-S alveolar macrophage (AMs) cell line was used to characterize innate immune responses to infection in vitro. Our results showed that alcohol exposure significantly suppressed the uptake and killing of B. thailandensis by AMs. Alveolar macrophages incubated in alcohol (0.08%) for 3 h prior to infection showed significantly lower bacterial uptake at 2 and 8 h post infection. Activated AMs with IFN-γ and pre and post-incubation in alcohol when exposed to B. thailandensis released lower nitric oxide (NO) concentrations, compared to activated AMs with IFN-γ from non-alcoholic controls. As a result, B. thailandensis survival and replication increased ∼2.5-fold compared to controls. The presence of alcohol (1%) also increased bacterial survival within AMs. Alcohol significantly decreased bacterial motility compared to non-alcoholic controls. Increased biofilm formation was observed at 3 and 6 h when bacteria were pre-incubated in (0.08%) alcohol. These results provide insights into binge alcohol consumption, a culturally prevalent risk factor, as a predisposing factor for melioidosis., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
13. High Leptospira Diversity in Animals and Humans Complicates the Search for Common Reservoirs of Human Disease in Rural Ecuador.
- Author
-
Barragan V, Chiriboga J, Miller E, Olivas S, Birdsell D, Hepp C, Hornstra H, Schupp JM, Morales M, Gonzalez M, Reyes S, de la Cruz C, Keim P, Hartskeerl R, Trueba G, and Pearson T
- Subjects
- Animals, Cattle, Disease Reservoirs microbiology, Ecuador epidemiology, Genotype, Humans, Livestock microbiology, Phylogeny, Poverty, Rats, Regression Analysis, Rural Population, Sequence Analysis, DNA, Swine, Zoonoses microbiology, Leptospira classification, Leptospira genetics, Leptospirosis epidemiology, Leptospirosis transmission, Zoonoses epidemiology
- Abstract
Background: Leptospirosis is a zoonotic disease responsible for high morbidity around the world, especially in tropical and low income countries. Rats are thought to be the main vector of human leptospirosis in urban settings. However, differences between urban and low-income rural communities provide additional insights into the epidemiology of the disease., Methodology/principal Findings: Our study was conducted in two low-income rural communities near the coast of Ecuador. We detected and characterized infectious leptospira DNA in a wide variety of samples using new real time quantitative PCR assays and amplicon sequencing. We detected infectious leptospira in a high percentage of febrile patients (14.7%). In contrast to previous studies on leptospirosis risk factors, higher positivity was not found in rats (3.0%) but rather in cows (35.8%) and pigs (21.1%). Six leptospira species were identified (L. borgpetersenii, L kirschnerii, L santarosai, L. interrogans, L noguchii, and an intermediate species within the L. licerasiae and L. wolffii clade) and no significant differences in the species of leptospira present in each animal species was detected (χ2 = 9.89, adj.p-value = 0.27)., Conclusions/significance: A large portion of the world's human population lives in low-income, rural communities, however, there is limited information about leptospirosis transmission dynamics in these settings. In these areas, exposure to peridomestic livestock is particularly common and high prevalence of infectious leptospira in cows and pigs suggest that they may be the most important reservoir for human transmission. Genotyping clinical samples show that multiple species of leptospira are involved in human disease. As these genotypes were also detected in samples from a variety of animals, genotype data must be used in conjunction with epidemiological data to provide evidence of transmission and the importance of different potential leptospirosis reservoirs., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2016
- Full Text
- View/download PDF
14. Massive dispersal of Coxiella burnetii among cattle across the United States.
- Author
-
Olivas S, Hornstra H, Priestley RA, Kaufman E, Hepp C, Sonderegger DL, Handady K, Massung RF, Keim P, Kersh GJ, and Pearson T
- Subjects
- Animals, Cattle, Cattle Diseases epidemiology, Cattle Diseases transmission, Coxiella burnetii genetics, Dairying, Female, Genotype, Milk microbiology, Polymorphism, Single Nucleotide genetics, Q Fever epidemiology, Q Fever microbiology, Q Fever transmission, Transportation, United States epidemiology, Cattle Diseases microbiology, Coxiella burnetii physiology, Q Fever veterinary
- Abstract
Q-fever is an underreported disease caused by the bacterium Coxiella burnetii , which is highly infectious and has the ability to disperse great distances. It is a completely clonal pathogen with low genetic diversity and requires whole-genome analysis to identify discriminating features among closely related isolates. C. burnetii , and in particular one genotype (ST20), is commonly found in cow's milk across the entire dairy industry of the USA. This single genotype dominance is suggestive of host-specific adaptation, rapid dispersal and persistence within cattle. We used a comparative genomic approach to identify SNPs for high-resolution and high-throughput genotyping assays to better describe the dispersal of ST20 across the USA. We genotyped 507 ST20 cow milk samples and discovered three subgenotypes, all of which were present across the entire country and over the complete time period studied. Only one of these sub-genotypes was observed in a single dairy herd. The temporal and geographic distribution of these sub-genotypes is consistent with a model of large-scale, rapid, frequent and continuous dissemination on a continental scale. The distribution of subgenotypes is not consistent with wind-based dispersal alone, and it is likely that animal husbandry and transportation practices, including pooling of milk from multiple herds, have also shaped the patterns. On the scale of an entire country, there appear to be few barriers to rapid, frequent and large-scale dissemination of the ST20 subgenotypes.
- Published
- 2016
- Full Text
- View/download PDF
15. Estimated herd prevalence and sequence types of Coxiella burnetii in bulk tank milk samples from commercial dairies in Indiana.
- Author
-
Bauer AE, Olivas S, Cooper M, Hornstra H, Keim P, Pearson T, and Johnson AJ
- Subjects
- Animals, Cattle, Cattle Diseases epidemiology, Coxiella burnetii genetics, DNA, Bacterial genetics, Genotype, Indiana epidemiology, Prevalence, Q Fever epidemiology, Q Fever microbiology, Cattle Diseases microbiology, Coxiella burnetii isolation & purification, Milk microbiology, Q Fever veterinary
- Abstract
Background: Coxiella burnetii is the etiologic agent of Q fever, a zoonotic disease causing influenza-like illness, pregnancy loss, cardiovascular disease and chronic fatigue syndrome in people. C. burnetii is considered to be enzootic in ruminants, but clinical signs of infection do not always manifest. National studies have documented the presence of C. burnetii in dairy herds in Indiana. This represents an opportunity to better characterize the distribution and prevalence of C. burnetii infection at the state scale, allowing evaluation of the need for surveillance and response planning to occur at this level. A cross-sectional study was conducted to estimate the herd prevalence of C. burnetii in commercial cattle dairies in Indiana and characterize the strains of C. burnetii within these dairies., Results: Bulk tank milk samples were collected between June and August of 2011 by the Indiana State Board of Animal Health (ISBOAH). A total of 316 of these samples were tested for the IS1111 transposon of C. burnetii using quantitative real time polymerase chain reaction (PCR). Single nucleotide polymorphism (SNP) genotyping was used to identify the multispacer sequence genotypes (ST) present in samples where the IS1111 transposon was identified. The geographic distribution of dairies testing positive for C. burnetii DNA and the identified STs were also evaluated. The estimated overall herd prevalence for C. burnetii DNA was 61.1 % (95 % CI 55.6-66.3 %). The highest estimated regional prevalence was 70.2 % in the Central region of Indiana. An ST was identifiable in 74 of the positive 178 samples (41.6 %) and none of the 10 negative samples tested. Of these samples, 71 (95.9 %) were identified as ST20, 2 (2.7 %) as ST8 and a combination of ST20 and ST8 was identified in a single sample., Conclusions: C. burnetii is present in dairy herds throughout Indiana. Indiana follows national trends with ST20 most commonly identified. The presence of multiple STs in a single bulk tank sample indicates that multiple strains of C. burnetii can circulate within a herd. This supports potential transmission of C. burnetii between goats and cattle, presenting the potential for a switch in the dominant genotype found in a given species.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.