1. The cold Jupiter eccentricity distribution is consistent with EKL driven by stellar companions
- Author
-
Weldon, Grant C., Naoz, Smadar, and Hansen, Bradley M. S.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
The large eccentricities of cold Jupiters and the existence of hot Jupiters have long challenged theories of planet formation. A proposed solution to both of these puzzles is high-eccentricity migration, in which an initially cold Jupiter is excited to high eccentricities before being tidally circularized. Secular perturbations from an inclined stellar companion are a potential source of eccentricity oscillations, a phenomenon known as the Eccentric Kozai-Lidov (EKL) mechanism. Previous studies have found that the cold Jupiter eccentricity distribution produced by EKL is inconsistent with observations. However, these studies assumed all planets start on circular orbits. Here, we revisit this question, considering that an initial period of planet-planet scattering on $\sim$Myr timescales likely places planets on slightly eccentric orbits before being modulated by EKL on $\sim$Myr-Gyr timescales. Small initial eccentricities can have a dramatic effect by enabling EKL to act at lower inclinations. We numerically integrate the secular hierarchical three-body equations of motion, including general relativity and tides, for populations of cold giant planets in stellar binaries with varied initial eccentricity distributions. For populations with modest initial mean eccentricities, the simulated eccentricity distribution produced by EKL is statistically consistent with the observed eccentricities of cold single-planet systems. The lower eccentricities in a multi-planet control sample suggest that planetary companions quench stellar EKL. We show that scattering alone is unlikely to reproduce the present-day eccentricity distribution. We also show that the anisotropic inclination distribution produced by EKL may lead radial velocity measurements to underestimate giant planet masses., Comment: Submitted to ApJL, 15 pages, 6 figures (typo corrected and reference added in v2)
- Published
- 2024