8 results on '"Freyberg, S."'
Search Results
2. Die Copernicanische Revolution als Geschichtszeichen: zur Entstehung der Transformationskosmologie
- Author
-
Freyberg, S. and Omodeo, P.
- Published
- 2023
Catalog
3. Back from the Future. Review of: Chukhrov, Kethi: Practising the Good: Desire and Boredom in Soviet Socialism. Minneapolis: eflux/University of Minnesota Press 2020
- Author
-
Freyberg, S. and Meisner, L.
- Published
- 2022
4. Rekonstruktive Synthesis: Zur Methodik der Kulturphilosophie bei Ernst Cassirer und John Dewey
- Author
-
Niklas, S., Freyberg, S., Breyer, T., and ASCA (FGw)
- Subjects
Transformative learning ,Idealism ,John dewey ,Philosophy ,Philosophy of culture ,Naturalism ,Order (virtue) ,Sketch ,Epistemology - Abstract
This paper argues that Ernst Cassirer and John Dewey - despite their seemingly opposing views on ‚idealism‘ and ‚naturalism‘ - pursue a common project. We want to elucidate this project along the lines of a philosophy of culture that is characterized by the leading idea of a reconstructive synthesis. The consequent result of this common project consists in the program for a logic of cultural inquiry. In order to establish the decisive link between Cassirer and Dewey we will first have a look at historical interrelations highlighting a shared conception of philosophy. We will, then, elaborate on the method of reconstruction as well as the transformative aspect of the logic of inquiry in Cassirer and Dewey. Finally, we will give a programmatic sketch of the logic of cultural inquiry resulting from our synthesis of the two theories. more...
- Published
- 2019
5. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus
- Author
-
de Vries, RP, Riley, R, Wiebenga, A, Aguilar-Osorio, G, Amillis, S, Uchima, CA, Anderluh, G, Asadollahi, M, Askin, M, Barry, K, Battaglia, E, Bayram, Ö, Benocci, T, Braus-Stromeyer, SA, Caldana, C, Cánovas, D, Cerqueira, GC, Chen, F, Chen, W, Choi, C, Clum, A, dos Santos, RAC, de Lima Damásio, AR, Diallinas, G, Emri, T, Fekete, E, Flipphi, M, Freyberg, S, Gallo, A, Gournas, C, Habgood, R, Hainaut, M, Harispe, ML, Henrissat, B, Hildén, KS, Hope, R, Hossain, A, Karabika, E, Karaffa, L, Karányi, Z, Kraševec, N, Kuo, A, Kusch, H, LaButti, K, Lagendijk, EL, Lapidus, A, Levasseur, A, Lindquist, E, Lipzen, A, Logrieco, AF, MacCabe, A, Mäkelä, MR, Malavazi, I, Melin, P, Meyer, V, Mielnichuk, N, Miskei, M, Molnár, ÁP, Mulé, G, Ngan, CY, Orejas, M, Orosz, E, Ouedraogo, JP, Overkamp, KM, Park, HS, Perrone, G, Piumi, F, Punt, PJ, Ram, AFJ, Ramón, A, Rauscher, S, Record, E, and Riaño-Pachón, DM more...
- Abstract
© 2017 The Author(s). Background: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. Results: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. Conclusions: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi. more...
- Published
- 2017
- Full Text
- View/download PDF
6. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus
- Author
-
de Vries, R.P. Riley, R. Wiebenga, A. Aguilar-Osorio, G. Amillis, S. Uchima, C.A. Anderluh, G. Asadollahi, M. Askin, M. Barry, K. Battaglia, E. Bayram, O. Benocci, T. Braus-Stromeyer, S.A. Caldana, C. Cánovas, D. Cerqueira, G.C. Chen, F. Chen, W. Choi, C. Clum, A. dos Santos, R.A.C. de Lima Damásio, A.R. Diallinas, G. Emri, T. Fekete, E. Flipphi, M. Freyberg, S. Gallo, A. Gournas, C. Habgood, R. Hainaut, M. Harispe, M.L. Henrissat, B. Hildén, K.S. Hope, R. Hossain, A. Karabika, E. Karaffa, L. Karányi, Z. Kraševec, N. Kuo, A. Kusch, H. LaButti, K. Lagendijk, E.L. Lapidus, A. Levasseur, A. Lindquist, E. Lipzen, A. Logrieco, A.F. MacCabe, A. Mäkelä, M.R. Malavazi, I. Melin, P. Meyer, V. Mielnichuk, N. Miskei, M. Molnár, A.P. Mulé, G. Ngan, C.Y. Orejas, M. Orosz, E. Ouedraogo, J.P. Overkamp, K.M. Park, H.-S. Perrone, G. Piumi, F. Punt, P.J. Ram, A.F.J. Ramón, A. Rauscher, S. Record, E. Riaño-Pachón, D.M. Robert, V. Röhrig, J. Ruller, R. Salamov, A. Salih, N.S. Samson, R.A. Sándor, E. Sanguinetti, M. Schütze, T. Sepčić, K. Shelest, E. Sherlock, G. Sophianopoulou, V. Squina, F.M. Sun, H. Susca, A. Todd, R.B. Tsang, A. Unkles, S.E. van de Wiele, N. van Rossen-Uffink, D. de Castro Oliveira, J.V. Vesth, T.C. Visser, J. Yu, J.-H. Zhou, M. Andersen, M.R. Archer, D.B. Baker, S.E. Benoit, I. Brakhage, A.A. Braus, G.H. Fischer, R. Frisvad, J.C. Goldman, G.H. Houbraken, J. Oakley, B. Pócsi, I. Scazzocchio, C. Seiboth, B. vanKuyk, P.A. Wortman, J. Dyer, P.S. Grigoriev, I.V. more...
- Abstract
Background: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. Results: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. Conclusions: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi. © 2017 The Author(s). more...
- Published
- 2017
7. The morphological paradigm in robotics.
- Author
-
Freyberg S and Hauser H
- Subjects
- Biological Evolution, Bionics, Artificial Intelligence, Robotics
- Abstract
In the paper, we are going to show how robotics is undergoing a shift in a bionic direction after a period of emphasis on artificial intelligence and increasing computational efficiency, which included isolation and extreme specialization. We assemble these new developments under the label of the morphological paradigm. The change in its paradigms and the development of alternatives to the principles that dominated robotics for a long time contains a more general epistemological significance. The role of body, material, environment, interaction and the paradigmatic status of biological and evolutionary systems for the principles of control are crucial here. Our focus will be on the introduction of the morphological paradigm in a new type of robotics and to contrast the interests behind this development with the interests shaping former models. The article aims to give a clear account of the changes in principles of orientation and control as well as concluding general observation in terms of historical epistemology, suggesting further political-epistemological analysis., (Copyright © 2023. Published by Elsevier Ltd.) more...
- Published
- 2023
- Full Text
- View/download PDF
8. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus.
- Author
-
de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, Dos Santos RA, Damásio AR, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AF, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JV, Vesth TC, Visser J, Yu JH, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, and Grigoriev IV more...
- Subjects
- Aspergillus metabolism, Biomass, Carbon metabolism, Computational Biology methods, Cytochrome P-450 Enzyme System genetics, Cytochrome P-450 Enzyme System metabolism, DNA Methylation, Fungal Proteins genetics, Gene Expression Regulation, Fungal, Gene Regulatory Networks, Humans, Metabolic Networks and Pathways, Molecular Sequence Annotation, Multigene Family, Oxidoreductases metabolism, Phylogeny, Plants metabolism, Plants microbiology, Secondary Metabolism genetics, Signal Transduction, Stress, Physiological genetics, Adaptation, Biological, Aspergillus classification, Aspergillus genetics, Biodiversity, Genome, Fungal, Genomics methods
- Abstract
Background: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus., Results: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli., Conclusions: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi. more...
- Published
- 2017
- Full Text
- View/download PDF
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.