11 results on '"Clarisse Ducruet"'
Search Results
2. Reduced Thermal Variation of Perpendicular Magnetic Anisotropy in Magnetically Stiffened Dual-W Composite Storage Layer for Spin-Transfer-Torque Magnetic Random-Access Memory
- Author
-
Ricardo C. Sousa, F. Fettar, Lucian Prejbeanu, Clarisse Ducruet, Stéphane Auffret, Bernard Dieny, I. Joumard, A. Chavent, Jyotirmoy Chatterjee, Laurent Vila, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Surfaces, Interfaces et Nanostructures (SIN ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), CROCUS Technology, and Surfaces, Interfaces et Nanostructures (NEEL - SIN)
- Subjects
[PHYS]Physics [physics] ,Materials science ,Condensed matter physics ,Spintronics ,Composite number ,Spin-transfer torque ,General Physics and Astronomy ,chemistry.chemical_element ,Stiffness ,02 engineering and technology ,Tungsten ,021001 nanoscience & nanotechnology ,01 natural sciences ,Tunnel magnetoresistance ,Ferromagnetism ,chemistry ,0103 physical sciences ,medicine ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,medicine.symptom ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,0210 nano-technology ,Layer (electronics) ,ComputingMilieux_MISCELLANEOUS - Abstract
This article reports a type of magnetic tunnel junction (MTJ) with an expanded middle layer, for spin-transfer-torque magnetic random-access memory (STT-MRAM). This data-storage layer of the form Fe-Co-B/W/Co/W/Fe-Co-B sandwiches a ferromagnet with high exchange stiffness between two tungsten films, and thus is much less sensitive to temperature than that in a conventional MTJ. Such a storage layer is promising for spintronic memory that must operate across a wide range of temperatures, as in automobile applications.
- Published
- 2019
- Full Text
- View/download PDF
3. Evaluation of a new MgO barrier based on CoFeB/MgO/CoFeB structure for advanced MRAM applications
- Author
-
T. Sedoykina, A. Orlov, Jeremy Pereira, Jérémy Alvarez-Hérault, C. Portemont, Clarisse Ducruet, E. Danilkin, and E. Smirnov
- Subjects
010302 applied physics ,Magnetoresistive random-access memory ,Materials science ,Spintronics ,Nanotechnology ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Engineering physics ,Atomic and Molecular Physics, and Optics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,Non-volatile memory ,Tunnel magnetoresistance ,Sputtering ,0103 physical sciences ,Static random-access memory ,Electrical and Electronic Engineering ,0210 nano-technology ,Dram - Abstract
MRAM technology offers the opportunity to provide all the advantages of the most popular types of memory, such as DRAM, SRAM and FLASH with none of its disadvantages. Magnetic tunnel junctions (MTJs) based on CoFeB/MgO/CoFeB structures are very promising for future spintronics, especially in MRAM memory operation due to its high tunnel magnetoresistance (TMR) and reasonable range of resistance area product (RA). The deposition process of MgO barrier in such structures is one of the most difficult challenges to achieve good parameters of MTJs and it strongly affects on the barrier roughness, especially on the low RA region because of insufficient crystallization of thin MgO on an amorphous CoFeB. Ordinary MgO barrier creation takes a long time due to obligatory steps of Mg oxidation in different module that makes process complicated and provides a risk of CoFeB oxidation through Mg. It is shown that the new approach of barrier formation using in-situ MgO RF sputtering with Mg insertions and higher Ar partial pressure has very promising ratio of TMR vs RA which can be used in MTJs required for low "read" and "write" currents having a big delta between Rmin and Rmax in the most advanced MRAM applications.
- Published
- 2017
- Full Text
- View/download PDF
4. Noise study of magnetic field sensors based on magnetic tunnel junctions
- Author
-
Myckael Mouchel, C. Baraduc, Amandine Bocheux, Jérémy Alvarez-Hérault, Clarisse Ducruet, K. Mackay, Ph. Sabon, Y. Conraux, I. L. Prejbeanu, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CROCUS Technology, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
- Subjects
010302 applied physics ,Physics ,History ,Infrasound ,Acoustics ,Low frequency ,01 natural sciences ,Noise (electronics) ,Computer Science Applications ,Education ,Magnetic field ,Low noise ,Amplitude ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Noise level ,Sensitivity (electronics) - Abstract
International audience; Low frequency noise has been studied for two types of magnetic field sensors based on magnetic tunnel junctions (MTJ). The first structure, composed of a few large MTJs, is designed for low noise applications; the second one, composed of hundreds of small MTJs, is designed for general purposes. At low frequency, both structures exhibit 1/f noise, but with very different amplitudes. The sensors for general purposes show a much higher noise level compared to the low-noise sensors. However, the sensitivity of the low noise sensors is much smaller compared to the other ones. Thus, the limit of detection, defined as the ratio of noise and sensitivity, turns out to be roughly the same for both technologies. Using the advantages of each sensor could help to design a sensor with an improved limit of detection.
- Published
- 2017
- Full Text
- View/download PDF
5. Enhanced annealing stability and perpendicular magnetic anisotropy in perpendicular magnetic tunnel junctions using W layer
- Author
-
N. Perrissin, Jyotirmoy Chatterjee, Stéphane Auffret, Ricardo C. Sousa, Clarisse Ducruet, Bernard Dieny, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CROCUS Technology, ANR-13-NANO-0010,EXCALYB,Cellules MRAM sub-20nm et intégration CMOS de circuits hybrides(2013), ANR-10-LABX-0055,MINOS Lab,Minatec Novel Devices Scaling Laboratory(2010), and European Project: 669204,H2020,ERC-2014-ADG,MAGICAL(2015)
- Subjects
010302 applied physics ,Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Annealing (metallurgy) ,Perpendicular magnetic anisotropy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Tunnel magnetoresistance ,Nuclear magnetic resonance ,0103 physical sciences ,Electrode ,Thermal ,Perpendicular ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Antiferromagnetism ,0210 nano-technology ,Anisotropy - Abstract
International audience; The magnetic properties of the perpendicular storage electrode (buffer/MgO/FeCoB/Cap) were studied as a function of annealing temperature by replacing Ta with W and W/Ta cap layers with variable thicknesses. W in the cap boosts up the annealing stability and increases the effective perpendicular anisotropy by 30% compared to the Ta cap. Correspondingly, an increase in the FeCoB critical thickness characterizing the transition from perpendicular to in-plane anisotropy was observed. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode highly robust against annealing up to 570 °C. The stiffening of the overall stack resulting from the W insertion due to its very high melting temperature seems to be the key mechanism behind the extremely high thermal robustness. The Gilbert damping constant of FeCoB with the W/Ta cap was found to be lower when compared with the Ta cap and stable with annealing. The evolution of the magnetic properties of bottom pinned perpendicular magnetic tunnel junctions (p-MTJ) stack with the W2/Ta1 nm cap layer shows back-end-of-line compatibility with increasing tunnel magnetoresistance up to the annealing temperature of 425 °C. The pMTJ thermal budget is limited by the synthetic antiferromagnetic hard layer which is stable up to 425 °C annealing temperature while the storage layer is stable up to 455 °C.
- Published
- 2017
- Full Text
- View/download PDF
6. High sensitivity magnetic field sensor for spatial applications
- Author
-
Myckael Mouchel, C. Baraduc, Ioan Lucian Prejbeanu, Claude Cavoit, Philippe Sabon, Clarisse Ducruet, Amandine Bocheux, Romain Fons, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), CROCUS Technology, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
010302 applied physics ,Materials science ,Magnetic energy ,Electromagnet ,business.industry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Magnetic flux ,law.invention ,Magnetic circuit ,Search coil ,Magnetic core ,Electromagnetic coil ,law ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Magnetic pressure ,0210 nano-technology ,business - Abstract
International audience; A high sensitivity 1D magnetic field sensor is developed for spatial applications, in order to replace the heavy search-coils currently used. This new sensor combines a flux concentrator, biasing coils for field modulation and magnetic tunnel junctions. These three elements are fabricated and independently characterized. Finally, the expected performance of a sensor combining these three elements can be estimated.
- Published
- 2016
- Full Text
- View/download PDF
7. Spin–Charge Conversion Phenomena in Germanium
- Author
-
Jean-Philippe Attané, Serge Gambarelli, F. Rortais, Matthieu Jamet, Henri Jaffrès, Hanako Okuno, Julie Widiez, Stéphanie Pouget, C. Vergnaud, P. Laczkowski, Simón Oyarzún, Clarisse Ducruet, Juan-Carlos Rojas-Sánchez, Federico Bottegoni, Alain Marty, C. Beigné, J.-M. George, Laurent Vila, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des Solides Irradiés (LSI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, Service Général des Rayons X (SGX ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Conception d’Architectures Moléculaires et Processus Electroniques (CAMPE), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), THALES [France]-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
- Subjects
Spin pumping ,Materials science ,Spin polarization ,Condensed matter physics ,business.industry ,Doping ,General Physics and Astronomy ,chemistry.chemical_element ,Germanium ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Semiconductor ,Quantum spin Hall effect ,chemistry ,0103 physical sciences ,Spin Hall effect ,Condensed Matter::Strongly Correlated Electrons ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,0210 nano-technology ,Spin (physics) ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
The spin–orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect-transistor made of semiconductors. In this paper, we review our recent results on spin–charge conversion in bulk germanium and at the Ge(111) surface. We used the spin pumping technique to generate pure spin currents to be injected into bulk germanium and at the Fe/Ge(111) interface. The mechanism for spin–charge conversion in bulk germanium is the spin Hall effect and we could experimentally determine the spin Hall angle θSHE, i.e., the spin–charge conversion efficiency, in heavily doped n-type and p-type germanium. We found very small values at room temperature: θSHE ≈ (1–2) × 10−3 in n-Ge and θSHE ≈ (6–7) × 10−4 in p-Ge. Moreover, we pointed out the essential role of spin dependent scattering on ionized impurities in the spin Hall effect mechanism. We concluded that the spin Hall effect in bulk germanium is too weak to...
- Published
- 2016
- Full Text
- View/download PDF
8. Electrical spin injection in silicon and the role of defects
- Author
-
F. Rortais, C. Vergnaud, Jean-Philippe Attané, Matthieu Jamet, Henri Jaffrès, Alain Marty, C. Beigné, Julie Widiez, Clarisse Ducruet, J.-M. George, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CROCUS Technology, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), ANR-13-BS10-0002,SiGeSPIN,Spintronique dans le silicium et le germanium(2013), and THALES [France]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Hanle effect ,Materials science ,Silicon ,Condensed matter physics ,Magnetoresistance ,chemistry.chemical_element ,Germanium ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Signal ,chemistry ,Ferromagnetism ,0103 physical sciences ,Condensed Matter::Strongly Correlated Electrons ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,Quantum tunnelling ,Spin-½ - Abstract
International audience; Three-terminal devices, where the same ferromagnetic electrode is used for electrical spin injection and detection, is a very easy and powerful tool to probe the spin properties in nonmagnetic materials. For instance, it has been intensively used to study spin injection and detection in silicon. However the interpretation of the magnetoresistance signals observed experimentally is still under debate. In particular, a controversy has been raised about the experimental spin signal which is orders of magnitude larger than the predicted value. Recently, Song et al. [Phys. Rev. Lett. 113, 047205 (2014)] proposed that the magnetoresistance signal measured using the Hanle effect in a three-terminal geometry is due to defects or impurities in the tunnel barrier separating the ferromagnetic electrode from the silicon channel. It has also been supported by the experimental work of Txoperena et al. [Phys. Rev. Lett. 113, 146601 (2014)]. In this study, we perform electrical spin injection/detection measurements using three-terminal devices in different silicon films and study the role of defects. For this purpose, we use the tunneling inelastic spectroscopy to measure the Hanle effect and control the presence of defects in the tunnel barrier. Contrary to previous reports, we demonstrate that defects have no significant contribution to the spin signal. From a comparison with capacitance-voltage measurements in n-doped germanium in which interface states contribute to the spin signal, we also conclude on the presence of interface states in silicon.
- Published
- 2016
- Full Text
- View/download PDF
9. Steady State and Dynamics of Joule Heating in Magnetic Tunnel Junctions Observed via the Temperature Dependence of RKKY Coupling
- Author
-
C. Portemont, I. L. Prejbeanu, Antoine Chavent, Ricardo C. Sousa, Clarisse Ducruet, Laurent Vila, Jérémy Alvarez-Hérault, Bernard Dieny, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CROCUS Technology, and ANR-13-NANO-0010,EXCALYB,Cellules MRAM sub-20nm et intégration CMOS de circuits hybrides(2013)
- Subjects
Coupling ,Magnetoresistive random-access memory ,Condensed Matter - Materials Science ,Materials science ,Steady state ,Condensed matter physics ,Magnetic moment ,Spintronics ,General Physics and Astronomy ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,01 natural sciences ,3. Good health ,Tunnel magnetoresistance ,0103 physical sciences ,Torque ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,0210 nano-technology ,Joule heating ,ComputingMilieux_MISCELLANEOUS - Abstract
Understanding quantitatively the heating dynamics in magnetic tunnel junctions (MTJ) submitted to current pulses is very important in the context of spin-transfer-torque magnetic random access memory development. Here we provide a method to probe the heating of MTJ using the RKKY coupling of a synthetic ferrimagnetic storage layer as a thermal sensor. The temperature increase versus applied bias voltage is measured thanks to the decrease of the spin-flop field with temperature. This method allows distinguishing spin transfer torque (STT) effects from the influence of temperature on the switching field. The heating dynamics is then studied in real-time by probing the conductance variation due to spin-flop rotation during heating. This approach provides a new method for measuring fast heating in spintronic devices, particularly magnetic random access memory (MRAM) using thermally assisted or spin transfer torque writing., Comment: 6 pages, 9 figures
- Published
- 2016
- Full Text
- View/download PDF
10. Controlled pulse shape cooling in planar TAS-STT-MRAM for improved writeability
- Author
-
Jérémy Alvarez-Hérault, Laurent Vila, C. Portemont, A. Chavent, B. Dieny, C. Creuzet, Clarisse Ducruet, R. C. Sousa, and I. L. Prejbeanu
- Subjects
Magnetoresistive random-access memory ,Nuclear magnetic resonance ,Materials science ,Condensed matter physics ,Phase (waves) ,Spin-transfer torque ,Antiferromagnetism ,Current (fluid) ,Pulse (physics) ,Voltage ,Magnetic field - Abstract
In field written thermally assisted (TAS) MRAM, the storage layer is pinned with an antiferromag-netic layer. The writing of TAS-MRAM consists of heating the storage layer above the blocking temperature of the antiferromagnet using an injected current pulse through the tunnel barrier. This pulse can be used to assist the writing either combined to an external magnetic field or to a spin transfer torque (STT) [1] effect coming from the spin polarized current flow. After setting the storage layer direction during the write step, the current pulse is removed, pinning the storage layer in the set direction. The actual temperature decay occurs in a timescale of few tens of nanoseconds [2]. STT is efficient while the current is flowing through the junction but disappears during cooling, once the heating pulse is removed. This assumption is valid if the temperature gradients across the barrier, giving rise to spin accumulation of thermal origin are negligible. In these conditions, when the temperature is above or close to the blocking temperature of the antiferromagnetic layer pinning the storage layer, the written state might be thermally unstable. In this paper, we have investigated the possibility of controlling the temperature decay, so that the spin polarized current and temperature decay at the same rate. We show that there is an improvement in writing reproducibility using a linear transition at the end of the current pulse during the cooling phase. This is especially evident in cases where STT influence on the field writing is more significant. The write error rate dependence with the voltage transition duration was measured, and we find an optimum value for a 70ns transition, corresponding to a linear pulse amplitude decay of 18mV/ns.
- Published
- 2015
- Full Text
- View/download PDF
11. Spin transport inp-type germanium
- Author
-
F. Rortais, Simón Oyarzún, Juan-Carlos Rojas-Sánchez, C. Vergnaud, J.-M. George, P. Laczkowski, Serge Gambarelli, Federico Bottegoni, Clarisse Ducruet, Matthieu Jamet, Franco Ciccacci, Laurent Vila, Henri Jaffrès, Alberto Ferrari, Jean-Philippe Attané, Julie Widiez, Alain Marty, C. Beigné, Nicolas Reyren, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Politecnico di Milano [Milan] (POLIMI), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), CROCUS Technology, Reconnaissance Ionique et Chimie de Coordination (RICC), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), ANR-13-BS10-0002,SiGeSPIN,Spintronique dans le silicium et le germanium(2013), Centre National de la Recherche Scientifique (CNRS)-THALES, Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Hanle effect ,Spin pumping ,Spintronics ,Spin polarization ,Condensed matter physics ,Chemistry ,02 engineering and technology ,Zero field splitting ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,7. Clean energy ,Spin wave ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Spin Hall effect ,Condensed Matter::Strongly Correlated Electrons ,General Materials Science ,Quantum spin liquid ,010306 general physics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.