16 results on '"Canizo, Jesica"'
Search Results
2. Whole-Mount RNA, Single-Molecule RNA (smRNA), and DNA Fluorescence In Situ Hybridization (FISH) in Mammalian Embryos
- Author
-
Canizo, Jesica, primary, Vandal, Katherine, additional, Biondic, Savana, additional, and Petropoulos, Sophie, additional
- Published
- 2023
- Full Text
- View/download PDF
3. Single-Cell mRNA-sncRNA Co-sequencing of Preimplantation Embryos
- Author
-
Biondic, Savana, primary, Zhao, Cheng, additional, Hagemann-Jensen, Michael, additional, Russell, Stewart J., additional, Vandal, Katherine, additional, Canizo, Jesica, additional, Librach, Clifford L., additional, and Petropoulos, Sophie, additional
- Published
- 2023
- Full Text
- View/download PDF
4. Conversion of High Biomass/Bagasse from Sorghum and Bermuda Grass into Second-Generation Bioethanol
- Author
-
Heredia-Olea, Erick, primary, Serna-Saldivar, Sergio O., additional, Perez-Carrillo, Esther, additional, and Canizo, Jesica R., additional
- Published
- 2018
- Full Text
- View/download PDF
5. A dose-dependent response to MEK inhibition determines hypoblast fate in bovine embryos
- Author
-
Canizo, Jesica R., Ynsaurralde Rivolta, Amada E., Vazquez Echegaray, Camila, Suvá, Mariana, Alberio, Virgilia, Aller, Juan F., Guberman, Alejandra S., Salamone, Daniel F., Alberio, Ricardo H., and Alberio, Ramiro
- Published
- 2019
- Full Text
- View/download PDF
6. Cross-species comparison of mouse and human preimplantation development with an Emphasis on Lineage Specification
- Author
-
Biondic, Savana, primary, Canizo, Jesica, additional, Vandal, Katherine, additional, Zhao, Cheng, additional, and Petropoulos, Sophie, additional
- Published
- 2023
- Full Text
- View/download PDF
7. Exogenous human OKSM factors maintain pluripotency gene expression of bovine and porcine iPS-like cells obtained with STEMCCA delivery system
- Author
-
Canizo, Jesica R., Vazquez Echegaray, Camila, Klisch, Doris, Aller, Juan F., Paz, Dante A., Alberio, Ricardo H., Alberio, Ramiro, and Guberman, Alejandra S.
- Published
- 2018
- Full Text
- View/download PDF
8. Single-cell multi-omics of human preimplantation embryos shows susceptibility to glucocorticoids
- Author
-
Zhao, Cheng, primary, Biondic, Savana, additional, Vandal, Katherine, additional, Björklund, Åsa K., additional, Hagemann-Jensen, Michael, additional, Sommer, Theresa Maria, additional, Canizo, Jesica, additional, Clark, Stephen, additional, Raymond, Pascal, additional, Zenklusen, Daniel R., additional, Rivron, Nicolas, additional, Reik, Wolf, additional, and Petropoulos, Sophie, additional
- Published
- 2022
- Full Text
- View/download PDF
9. Single-cell multi-omics of human preimplantation embryos shows susceptibility to glucocorticoids
- Author
-
Zhao, Cheng, Biondic, Savana, Vandal, Katherine, Björklund, Åsa K., Hagemann-Jensen, Michael, Sommer, Theresa Maria, Canizo, Jesica, Clark, Stephen, Raymond, Pascal, Zenklusen, Daniel R. R., Rivron, Nicolas, Reik, Wolf, Petropoulos, Sophie, Zhao, Cheng, Biondic, Savana, Vandal, Katherine, Björklund, Åsa K., Hagemann-Jensen, Michael, Sommer, Theresa Maria, Canizo, Jesica, Clark, Stephen, Raymond, Pascal, Zenklusen, Daniel R. R., Rivron, Nicolas, Reik, Wolf, and Petropoulos, Sophie
- Abstract
The preconceptual, intrauterine, and early life environments can have a profound and long-lasting impact on the developmental trajectories and health outcomes of the offspring. Given the relatively low success rates of assisted reproductive technologies (ART; similar to 25%), additives and adjuvants, such as glucocorticoids, are used to improve the success rate. Considering the dynamic developmental events that occur during this window, these exposures may alter blastocyst formation at a molecular level, and as such, affect not only the viability of the embryo and the ability of the blastocyst to implant, but also the developmental trajectory of the first three cell lineages, ultimately influencing the physiology of the embryo. In this study, we present a comprehensive single-cell transcriptome, methylome, and small RNA atlas in the day 7 human embryo. We show that, despite no change in morphology and developmental features, preimplantation glucocorticoid exposure reprograms the molecular profile of the trophectoderm (TE) lineage, and these changes are associated with an altered metabolic and inflammatory response. Our data also suggest that glucocorticoids can precociously mature the TE sublineages, supported by the presence of extravillous trophoblast markers in the polar sublineage and presence of X Chromosome dosage compensation. Further, we have elucidated that epigenetic regulation-DNA methylation and microRNAs (miRNAs)-likely underlies the transcriptional changes observed. This study suggests that exposures to exogenous compounds during preimplantation may unintentionally reprogram the human embryo, possibly leading to suboptimal development and longer-term health outcomes.
- Published
- 2022
- Full Text
- View/download PDF
10. Modulation of bovine pluripotency genes: a platform development for obtaining and culturing pluripotent stem cells
- Author
-
Canizo, Jesica Romina, Alberio, Ramiro, and Paz, Dante Agustín
- Subjects
EARLY DEVELOPMENT ,CELULAS MADRE ,FARM ANIMALS ,MODULATION OF PATHWAYS ,DESARROLLO EMBRIONARIO ,MODULACION DE LAS VIAS DE SEÑALIZACION ,ANIMALES DE GRANJA ,PLURIPOTENCIA ,PLURIPOTENCY ,STEM CELLS - Abstract
Las células madre embrionarias (ESC) se han utilizado exitosamente desde hace más de 30 años en la transgénesis de ratón y más recientemente en rata para llevar a cabo investigaciones en genética, biología del desarrollo y posibles futuras aplicaciones en medicina regenerativa. Estas células derivadas del macizo celular interno (ICM) del embrión de ratón tiene cuatro propiedades fundamentales que han facilitado su utilización para la modificación genética: 1- pluripotencia, 2- clonogenicidad, 3- capacidad de auto renovación a largo plazo y 4- capacidad de formar quimeras y contribuir a la línea germinal (“quimeras germinales”). Esta última característica permite obtener quimeras de forma muy eficiente: 60 % de animales nacidos vivos en el caso de inyección en blastocistos de ratón y 80 % mediante la agregación de ESC a embriones de 8 células. Las células con estas propiedades se definen como células pluripotentes naïve y se diferencian de otro tipo de célula embrionaria pluripotente derivadas del epiblasto, denominadas células primed (EpiSC). En los últimos años, se han llevado a cabo numerosos estudios para establecer los mecanismos que determinan la pluripotencia naïve durante el desarrollo embrionario temprano y durante la generación de células madre pluripotentes inducidas (iPSC), aunque en su mayoría se han realizado en ratón y en menor medida en humano. La generación de células naïve bovinas y su utilización para generar bovinos transgénicos requiere entonces trasladar este tipo de estudios. El objetivo general de esta tesis fue estudiar los mecanismos involucrados en la emergencia de la pluripotencia durante el desarrollo embrionario temprano en bovinos y aplicar estos conocimientos al desarrollo de una plataforma biotecnológica para la producción de bovinos transgénicos con fines productivos (molecular pharming) basados en la derivación de células pluripotentes embrionarias y en la reprogramación de células somáticas. Para ello en el primer capítulo se estudió dos condiciones alternativas al medio clásico SOF/BSA para cultivo in vitro de embriones sin suero. El medio N2B27 se estableció como la mejor opción libre de suero para obtener blastocistos bovinos de alta calidad necesarios para estudiar el impacto de la modulación de las vías de señalización y su efecto en la segregación embrionaria. Posteriormente se estudiaron los marcadores de epiblasto e hipoblasto (PE) bovino resultando NANOG y SOX17 los escogidos para evaluar los efectos en la especificación de estos linajes. Adicionalmente se documentó la dinámica de expresión de estos genes durante el desarrollo temprano en embriones de 4 células a blastocitos. La co-expresión comienza al estadio de 8 células, se intensifica en el estadio de mórula y se restringe mutuamente en el de blastocisto. Mediante la detección por inmunofluorescencia se determinó el número de células positivas de cada marcador y con ello se evaluó el efecto de diferentes medios de cultivo sobre la evolución de embriones bovinos producidos in vitro. Se comparó el medio N2B27 t2iGo LIF, utilizado para establecer líneas de células madre embrionarias naïve de ratón y humano, con el control (DMSO), y con el medio al que solo se le agregó h-LIF o t2iGö. Este último es una combinación de PD0325901 y CHIR, inhibidores de MAPK7ERK y GSK3 respectivamente, con la adición de PKC (Gö6983). Del análisis de los resultados se concluyó que el medio N2B27 h-LIF aumentó el número de células NANOG y SOX17 positivas y por tanto del ICM en detrimento del trofoectodermo (TE), lo que indica un efecto en el primer evento de diferenciación embrionaria. A su vez este medio aumentó el número de células que co-expresan NANOG y SOX17. Por otro lado, en el medio N2B27 t2iGö h-LIF se detectaron diferencias en la segregación del epiblasto e hipoblasto de día 8 con un efecto parcial, generando un mayor número de células NANOG positivas en el ICM en detrimento de las SOX17 positivas sin lograr bloquear completamente la formación del hipoblasto. De acuerdo a estos resultados, se cree que existe algún otro mecanismo que junto a la vía MAPK/ERK participa en el embrión bovino para el establecimiento del segundo evento de diferenciación. Para evaluar esta nueva hipótesis, se estudió el efecto de N2B27 suplementado con PD0325901 en una concentración de 10 μM (PD032+), solo y en conjunto con IWP2 el inhibidor de Wnt. Se compararon estos grupos con el control (DMSO) y el medio con solo IWP2. Se ha reportado previamente que la inhibición conjunta de MARPK/ERK y Wnt inhiben el desarrollo del PE en embriones de monos. Inesperadamente nuestros resultados demuestran que PD032+ bloquea la expresión de SOX17 y probablemente la formación del PE, aunque sin el aumento del número de células que expresan NANOG. Este efecto también se observa en la combinación IWP2 + PD032+. Posteriormente, con el fin de establecer si la disminución de las células NANOG positivas se debió a la alta concentración del inhibidor, se llevó a cabo un análisis de la curva dosis respuesta en la que se varió la concentración de PD032 de 2.5, 5 y 10 μM. En todas las concentraciones, se observó la ausencia de células SOX17, en cuanto que NANOG respondió de forma parabólica en la que el número de células positivas es mayor a 5 μM que a 2.5 y 10 y semejante a la del control (DMSO). Al contrario de lo que se esperaba, este resultado en el que no hay un aumento del marcador de un linaje en detrimento del otro nos lleva a pensar que el efecto del bloqueo de SOX17 no se debe a un cambio en la decisión del destino celular. Se necesita profundizar el análisis para determinar la causa de dicho efecto. En el segundo capítulo se evaluaron diferentes metodologías para la generación de iPSC bovinas, tanto aquellas en la que los factores de reprogramación OCT4, KLF4, SOX2 y C-MYC (OKSM) se introdujeron en la célula de forma transitoria mediante episomas, como las que se insertaron en el genoma mediante la transducción de las células con partículas lentivirales. Se realizó en paralelo la reprogramación de células de fibroblastos porcinos (PEF), utilizadas en primera instancia como control del protocolo de reprogramación. Se establecieron las condiciones óptimas en los procesos de transfección de episomas y de generación de partículas lentivirales, previo a la reprogramación. Se trabajó con diferentes medios de reprogramación, el convencional KSR + FGF, el medio E8 de cultivo de células en medio feeder and serum free y el medio SB43 en el que se modulan las vías MAPK/ERK, Wnt y las mediadas por TGF. Se caracterizaron las células obtenidas por inmunofluorescencia de marcadores de pluripotencia nucleares y de membrana, por RT-PCR, actividad de fosfatasa alcalina (AP), detección de la inserción del vector (STEMCCA) en el genoma y expresión de los factores exógenos mediante RT-PCR. Los resultados obtenidos en los experimentos con episomas ponen en evidencia una vez más la dificultad de reprogramar células somáticas en las especies en estudio (bovino y porcino), en los que aún no se han logrado establecer líneas de iPSC genuinas. Por otro lado, haciendo uso de partículas lentivirales en donde la expresión de los genes es constitutiva y suficiente para iniciar la reprogramación, se obtuvieron con mayor facilidad a partir de células porcinas que bovinas, colonias de morfología semejante a las iPSC. Reprogramar células bovinas requirió de la modificación de las condiciones de reprogramación para ajustar los mismos a la cinética de crecimiento de fibroblastos bovinos y a la baja eficiencia con que estos se transducen a una misma MOI con respecto a otras especies. Para ambas especies sigue siendo un desafío establecer el cultivo en forma estable en el tiempo sin que las células varíen sus características. Determinar las condiciones de cultivo que favorezcan la expresión de genes endógenos de la red de pluripotencia e inactiven los exógenos utilizados en los protocolos de partículas lentivirales sigue siendo el cuello de botella en los procesos de establecimiento de iPSC bovinas y porcinas. Como aún no se lograron las células totalmente reprogramadas en estas especies, es fundamental ganar más conocimiento de los mecanismos moleculares de establecimiento de pluripotencia y diferenciación en animales de granja para superar este obstáculo. Embryonic stem cells (ESC) have been successfully employed in mouse transgenesis during more than 30 years, and more recently in rats, to carry on research about genetics, developmental biology and future regenerative medicine applications. These cells are derived from the inner cells mass (ICM) of mouse embryos and have two properties that make able their use as a vector in genetic modified animals generation: 1) pluripotency, 2) clonogenicity, 3) self-renewal, 4) capacity for making chimeras and contributing to the germ line. This last feature allows them to produce chimeras in an efficiently manner: 60% of lived born animals when blastocyst injection is used and 80% by 8 cells aggregation of ESC. These kind of cells are defined as “naive” pluripotent stem cells and they differ from that derived from the epiblast: the primed state of pluripotent stem cells (EpiSC). Over the last few years many studies have been carried on to establish the molecular mechanism that define naive pluripotency during early embryonic development and during the generation of induced pluripotent stem cells (iPSC). These studies were mainly focused on mouse and then in human pluripotency. The generation of naive bovine cells and their use for generating bovine transgenic animals require to study this as well. The main objective of this research was to study the mechanism of pluripotency emergency during bovine embryonic development and the use of this new knowledge for developing a biotechnological platform to produce transgenic bovines with productive purposes (molecular pharming) based on derivation of ESC and reprogramming of somatic cells. In the first chapter, two serum free conditions for culturing bovine embryos were studied. The N2B27 medium was the best option for producing bovine blastocysts of high quality to study the impact of molecular pathways and their effect in lineage segregation. Then, molecular markers for epiblast and hypoblast were chosen resulting NANOG and SOX17 as the better options for studying the specification of these two lineages. Moreover, their dynamic expression was studied during early embryonic development starting with 4 cell stage to blastocyst stage. Co expression of NANOG/SOX17 was detected at 8 cell stage, their expression was intensified at morula stage and become mutually restricted at blastocyst stage. Then, the number of positive cells of each marker was determined by immunofluorescence analysis and therefore the effect of different medium formulations was evaluated in the in vitro bovine embryos. N2B27 t2iGö h-LIF used in the establishment of mouse and human naive ESC was compared with control (N2B27 with DMSO) and N2B27 with h-LIF or t2iGö. t2iGö is a combination of PD0325901 and CHIR, MAPK/ERK and GSK3 inhibitors respectively known as 2i, with PKC inhibitor (Gö6983). Results shows that N2B27 h-LIF increased the number of NANOG and SOX17 positive cells and therefore the size of ICM in detriment of trophectoderm (TE). Therefore, h-LIF influenced the first event of lineage segregation when ICM and TE are specified. At the same time, this medium increased the number of NANOG and SOX17 co expressed cells. On the other hand, N2B27 t2iGö h-LIF was the only medium able to impact on the second event of embryo lineage segregation, having more NANOG positive cells in day 8 embryos treated with it and partially blocking PE specification. In conclusion, we expected that other pathway with MAPK/ERK specifies primitive endoderm in bovine embryos. For elucidating this new hypothesis, we studied the effect of N2B27 with PD0325901 at 10 μM (PD032+), alone and with IWP2, a Wnt inhibitor. This groups were compared with control (DMSO) and N2B27 with IWP2. Previously was reported that dual inhibition of MARPK/ERK and Wnt blocks the development of PE in marmoset embryos. Unexpectedly, our results show that PD032+ blocked SOX17 expression and probably the PE specification although without NANOG positive cells increase (actually a decrease regard of the control). This effect was also seen in the combination IWP2 + PD032+. Then, with the aim of establishing if NANOG positive cells decrease was due to a high concentration of PD032, we made and analysis of dose response curve with 2.5, 5 and 10 μM of the inhibitor. In all the conditions, we saw the ablation of SOX17 expression, meanwhile the NANOG number of cells respond in a parabolic manner where the highest number was at a concentration of 5 μM and at this concentration the positive cells number was like the control (DMSO). Contrary to we expected, this result in which there is no an increase of one lineage in detriment of the other suggests us that the effect on the PE is not due to a change in the decision fate of the cell. More studies are needed to understand what happened at high concentration of PD032 inhibitor. In the second chapter, different strategies were evaluated for bovine iPSC generation. Episomes and lentivirus were used for introducing reprogramming factors OCT4, KLF4, SOX2, C-MYC (OKSM). At the same time, porcine fibroblast (PEF) were reprogramming as control of the method employed. Episomes transfection and generation of lentivirus were previously optimized. Cells were cultured in different media: KSR + FGF, E8 medium for feeder and serum free conditions and finally SB43 medium in which MAPK/ERK, Wnt and TGF pathways are modulated. Cells with changed morphology were characterized by immunofluorescence of pluripotency markers, RT-PCR, alkaline phosphatase and detection of STEMCCA in the genome of reprogramming cells. Finally, detection of exogenously factors were analysed during long term culture by RT-PCR. Results obtained with episomes demonstrate once again that bovine and porcine cells are recalcitrant for reprogramming. Culturing of bonafide iPSC cells in these species are still difficult and pluripotency is not maintained by endogenous factors but exogenous. On the other hand, protocols based on lentiviruses produce porcine iPSC-like cells more easily then bovine. That means that protocols used in other species are useful for obtaining porcine colonies but working with bovine cells need the adjustment of conditions. Despite of the fact of getting colonies, long term culture of iPSC is still difficult for both species; they maintained the stem cells features only by the expression of exogenous factors. Inactivation of the STEMCCA is still a bottleneck for establishing bonafide iPSC, since culture medium did not maintain endogenous OKSM expression. Therefore, it is still crucial getting more knowledge regard on the molecular mechanism for pluripotency and differentiation establishment in farm animals. Fil: Canizo, Jesica Romina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
- Published
- 2017
11. Protein arginine Methyltransferase 8 gene is expressed in pluripotent stem cells and its expression is modulated by the transcription factor Sox2
- Author
-
Solari, Claudia, Echegaray, Camila Vázquez, Luzzani, Carlos, Cosentino, María Soledad, Waisman, Ariel, Petrone, María Victoria, Francia, Marcos, Sassone, Alina, Canizo, Jésica, Sevlever, Gustavo, Barañao, Lino, Miriuka, Santiago, and Guberman, Alejandra
- Published
- 2016
- Full Text
- View/download PDF
12. Free cholesterol and cholesterol esters in bovine oocytes: Implications in survival and membrane raft organization after cryopreservation
- Author
-
Buschiazzo, Jorgelina, primary, Ríos, Glenda L., additional, Canizo, Jesica R., additional, Antollini, Silvia S., additional, and Alberio, Ricardo H., additional
- Published
- 2017
- Full Text
- View/download PDF
13. Guinea Pig Preimplantation Embryos: Generation, Collection, and Immunofluorescence.
- Author
-
Canizo J, Biondic S, Lenghan KV, and Petropoulos S
- Subjects
- Humans, Female, Guinea Pigs, Animals, Vagina, Blastocyst, Fluorescent Antibody Technique, Reproduction, Estrus
- Abstract
Studying various animal models is important for comparative biology and to better understand evolutionary development. Furthermore, when aiming to translate findings to human development, it is crucial to select an appropriate animal model that closely resembles the specific aspect of development under study. The guinea pig is highlighted as a useful platform for reproductive studies due to similarities in in utero development and general physiology with the human. This chapter outlines the methods required for guinea pig mating and collection of embryos for in vitro culture and molecular characterization. Specifically, this chapter provides detailed guidance on monitoring the estrus cycle to determine the mating time, performing a vaginal flush and smear to confirm successful mating, performing euthanasia of the guinea pig, and flushing in vivo embryos. Once collected, the embryos can be utilized for numerous downstream applications. Here we will cover embryo culturing and processing embryos for immunofluorescence., (© 2023. Springer Science+Business Media, LLC.)
- Published
- 2024
- Full Text
- View/download PDF
14. Manual Dissociation of Mammalian Preimplantation Embryos for Single-Cell Genomics.
- Author
-
Vandal K, Biondic S, Canizo J, and Petropoulos S
- Subjects
- Mice, Animals, Genomics, Mammals, Blastocyst, Embryo, Mammalian
- Abstract
Single-cell genomics allow the characterization and quantification of molecular heterogeneity from a wide variety of tissues. Here, we describe the manual dissociation and collection of single cells, a method adapted for the characterization of precious small tissues like preimplantation embryos. We also describe the acquisition of mouse embryos by flushing of the oviducts. The cells can then be used in multiple sequencing protocols, for example, Smart-seq2, Smart-seq3, smallseq, and scBSseq., (© 2023. Springer Science+Business Media, LLC.)
- Published
- 2024
- Full Text
- View/download PDF
15. Single-Cell mRNA-sncRNA Co-sequencing of Preimplantation Embryos.
- Author
-
Biondic S, Zhao C, Hagemann-Jensen M, Russell SJ, Vandal K, Canizo J, Librach CL, and Petropoulos S
- Subjects
- Humans, Pregnancy, Female, Mice, Animals, Blastocyst, Embryo, Mammalian, Embryonic Development genetics, RNA, Messenger, RNA, Small Untranslated
- Abstract
The development of single-cell multiomics has provided the ability to systematically investigate cellular diversity and heterogeneity in different biological systems via comprehensive delineations of individual cellular states. Single-cell RNA sequencing in particular has served as a powerful tool to the study of the molecular circuitries underlying preimplantation embryonic development in both the mouse and human. Here we describe a method to elucidate the cellular dynamics of the embryo further by performing both single-cell RNA sequencing (Smart-Seq2) and single-cell small non-coding RNA sequencing (Small-Seq) on the same individual embryonic cell., (© 2023. Springer Science+Business Media, LLC.)
- Published
- 2024
- Full Text
- View/download PDF
16. Whole-Mount RNA, Single-Molecule RNA (smRNA), and DNA Fluorescence In Situ Hybridization (FISH) in Mammalian Embryos.
- Author
-
Canizo J, Vandal K, Biondic S, and Petropoulos S
- Subjects
- Animals, In Situ Hybridization, Fluorescence methods, RNA, Messenger genetics, DNA genetics, Mammals genetics, RNA genetics, Embryo, Mammalian
- Abstract
Fluorescence in situ hybridization (FISH) provides a valuable tool for studying the spatial localization of and expression level of genes and cell function in diverse biological contexts. In this chapter, we describe a protocol for the simultaneous detection of RNA (including single-molecule (sm)RNA) and DNA in mammalian embryos using FISH. RNA FISH is a technique that enables the detection and visualization of specific RNA molecules within cells. With advancements in technology, the sensitivity and specificity of RNA FISH has been improved to allow the detection of individual mRNA molecules. Both RNA and smRNA are detected using a set of fluorescent-labeled probes, which are complementary to a specific nucleotide sequence corresponding to the gene of interest. These probes hybridize to the target RNA molecules, enabling the simultaneous detection of multiple RNAs within the same cell or tissue. DNA FISH is performed using probes directed at the DNA sequence to detect the genome region of interest. In this chapter, we provide a protocol to process mammalian embryos for FISH with probe examples specifically for studying X-Chromosome activity. By utilizing other probe designs, this protocol can be adapted for the visualization and quantification of other genes and chromosomal regions of interest., (© 2023. Springer Science+Business Media, LLC.)
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.