1. Measure This, Not That: Optimizing the Cost and Model-Based Information Content of Measurements
- Author
-
Wang, Jialu, Peng, Zedong, Hughes, Ryan, Bhattacharyya, Debangsu, Neira, David E. Bernal, and Dowling, Alexander W.
- Subjects
Mathematics - Optimization and Control ,Electrical Engineering and Systems Science - Systems and Control ,Statistics - Applications ,90C25, 90C11, 90C30, 90C90, 62K05 - Abstract
Model-based design of experiments (MBDoE) is a powerful framework for selecting and calibrating science-based mathematical models from data. This work extends popular MBDoE workflows by proposing a convex mixed integer (non)linear programming (MINLP) problem to optimize the selection of measurements. The solver MindtPy is modified to support calculating the D-optimality objective and its gradient via an external package, \texttt{SciPy}, using the grey-box module in Pyomo. The new approach is demonstrated in two case studies: estimating highly correlated kinetics from a batch reactor and estimating transport parameters in a large-scale rotary packed bed for CO$_2$ capture. Both case studies show how examining the Pareto-optimal trade-offs between information content measured by A- and D-optimality versus measurement budget offers practical guidance for selecting measurements for scientific experiments.
- Published
- 2024