82 results on '"Besnard T"'
Search Results
2. THUMPD1 bi-allelic variants cause loss of tRNA acetylation and a syndromic neurodevelopmental disorder
- Author
-
Broly, M., Polevoda, Bogdan, V, Awayda, Kamel M., Tong, N.W., Lentini, Jenna, Besnard, T., Bokhoven, H. van, Cogne, B., O'Connell, Mitchell R., Broly, M., Polevoda, Bogdan, V, Awayda, Kamel M., Tong, N.W., Lentini, Jenna, Besnard, T., Bokhoven, H. van, Cogne, B., and O'Connell, Mitchell R.
- Abstract
Item does not contain fulltext
- Published
- 2022
3. Loss-of-function variants in SRRM2 cause a neurodevelopmental disorder
- Author
-
Cuinat, S., Nizon, M., Isidor, B., Stegmann, Alexander, Jaarsveld, R.H. van, Gassen, K.L.I. van, Smagt, J.J. van der, Volker-Touw, C.M., Holwerda, S.J.B., Terhal, P.A., Schuhmann, S., Vasileiou, G., Khalifa, M., Nugud, A.A., Yasaei, H., Ousager, L.B., Brasch-Andersen, C., Deb, W., Besnard, T., Simon, M.E., Amsterdam, K.H., Verbeek, N.E., Matalon, D., Dykzeul, N., White, S., Spiteri, E., Devriendt, K., Boogaerts, A., Willemsen, M.H., Brunner, H.G., Sinnema, M., Vries, B.B. de, Gerkes, E.H., Pfundt, R.P., Izumi, K., Krantz, I.D., Xu, Z.L., Murrell, J.R., Valenzuela, I., Cusco, I., Rovira-Moreno, E., Yang, Y., Bizaoui, V., Patat, O., Faivre, L., Tran-Mau-Them, F., Vitobello, A., Denommé-Pichon, A.S., Philippe, C., Bezieau, S., Cogné, B., Cuinat, S., Nizon, M., Isidor, B., Stegmann, Alexander, Jaarsveld, R.H. van, Gassen, K.L.I. van, Smagt, J.J. van der, Volker-Touw, C.M., Holwerda, S.J.B., Terhal, P.A., Schuhmann, S., Vasileiou, G., Khalifa, M., Nugud, A.A., Yasaei, H., Ousager, L.B., Brasch-Andersen, C., Deb, W., Besnard, T., Simon, M.E., Amsterdam, K.H., Verbeek, N.E., Matalon, D., Dykzeul, N., White, S., Spiteri, E., Devriendt, K., Boogaerts, A., Willemsen, M.H., Brunner, H.G., Sinnema, M., Vries, B.B. de, Gerkes, E.H., Pfundt, R.P., Izumi, K., Krantz, I.D., Xu, Z.L., Murrell, J.R., Valenzuela, I., Cusco, I., Rovira-Moreno, E., Yang, Y., Bizaoui, V., Patat, O., Faivre, L., Tran-Mau-Them, F., Vitobello, A., Denommé-Pichon, A.S., Philippe, C., Bezieau, S., and Cogné, B.
- Abstract
Contains fulltext : 282702.pdf (Publisher’s version ) (Closed access), PURPOSE: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease. METHODS: Among the 1000 probands studied with developmental delay and intellectual disability in our database, we found 2 patients with de novo LoF variants in SRRM2. Additional families were identified through GeneMatcher. RESULTS: Here, we report on 22 patients with LoF variants in SRRM2 and provide a description of the phenotype. Molecular analysis identified 12 frameshift variants, 8 nonsense variants, and 2 microdeletions of 66 kb and 270 kb. The patients presented with a mild developmental delay, predominant speech delay, autistic or attention-deficit/hyperactivity disorder features, overfriendliness, generalized hypotonia, overweight, and dysmorphic facial features. Intellectual disability was variable and mild when present. CONCLUSION: We established SRRM2 as a gene responsible for a rare neurodevelopmental disease.
- Published
- 2022
4. Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome
- Author
-
Stephenson, SEM, Costain, G, Blok, LER, Silk, MA, Nguyen, TB, Dong, X, Alhuzaimi, DE, Dowling, JJ, Walker, S, Amburgey, K, Hayeems, RZ, Rodan, LH, Schwartz, MA, Picker, J, Lynch, SA, Gupta, A, Rasmussen, KJ, Schimmenti, LA, Klee, EW, Niu, Z, Agre, KE, Chilton, I, Chung, WK, Revah-Politi, A, Au, PYB, Griffith, C, Racobaldo, M, Raas-Rothschild, A, Ben Zeev, B, Barel, O, Moutton, S, Morice-Picard, F, Carmignac, V, Cornaton, J, Marle, N, Devinsky, O, Stimach, C, Wechsler, SB, Hainline, BE, Sapp, K, Willems, M, Bruel, A, Dias, K-R, Evans, C-A, Roscioli, T, Sachdev, R, Temple, SEL, Zhu, Y, Baker, JJ, Scheffer, IE, Gardiner, FJ, Schneider, AL, Muir, AM, Mefford, HC, Crunk, A, Heise, EM, Millan, F, Monaghan, KG, Person, R, Rhodes, L, Richards, S, Wentzensen, IM, Cogne, B, Isidor, B, Nizon, M, Vincent, M, Besnard, T, Piton, A, Marcelis, C, Kato, K, Koyama, N, Ogi, T, Goh, ES-Y, Richmond, C, Amor, DJ, Boyce, JO, Morgan, AT, Hildebrand, MS, Kaspi, A, Bahlo, M, Fridriksdottir, R, Katrinardottir, H, Sulem, P, Stefansson, K, Bjornsson, HT, Mandelstam, S, Morleo, M, Mariani, M, Scala, M, Accogli, A, Torella, A, Capra, V, Wallis, M, Jansen, S, Waisfisz, Q, de Haan, H, Sadedin, S, Lim, SC, White, SM, Ascher, DB, Schenck, A, Lockhart, PJ, Christodoulou, J, Tan, TY, Stephenson, SEM, Costain, G, Blok, LER, Silk, MA, Nguyen, TB, Dong, X, Alhuzaimi, DE, Dowling, JJ, Walker, S, Amburgey, K, Hayeems, RZ, Rodan, LH, Schwartz, MA, Picker, J, Lynch, SA, Gupta, A, Rasmussen, KJ, Schimmenti, LA, Klee, EW, Niu, Z, Agre, KE, Chilton, I, Chung, WK, Revah-Politi, A, Au, PYB, Griffith, C, Racobaldo, M, Raas-Rothschild, A, Ben Zeev, B, Barel, O, Moutton, S, Morice-Picard, F, Carmignac, V, Cornaton, J, Marle, N, Devinsky, O, Stimach, C, Wechsler, SB, Hainline, BE, Sapp, K, Willems, M, Bruel, A, Dias, K-R, Evans, C-A, Roscioli, T, Sachdev, R, Temple, SEL, Zhu, Y, Baker, JJ, Scheffer, IE, Gardiner, FJ, Schneider, AL, Muir, AM, Mefford, HC, Crunk, A, Heise, EM, Millan, F, Monaghan, KG, Person, R, Rhodes, L, Richards, S, Wentzensen, IM, Cogne, B, Isidor, B, Nizon, M, Vincent, M, Besnard, T, Piton, A, Marcelis, C, Kato, K, Koyama, N, Ogi, T, Goh, ES-Y, Richmond, C, Amor, DJ, Boyce, JO, Morgan, AT, Hildebrand, MS, Kaspi, A, Bahlo, M, Fridriksdottir, R, Katrinardottir, H, Sulem, P, Stefansson, K, Bjornsson, HT, Mandelstam, S, Morleo, M, Mariani, M, Scala, M, Accogli, A, Torella, A, Capra, V, Wallis, M, Jansen, S, Waisfisz, Q, de Haan, H, Sadedin, S, Lim, SC, White, SM, Ascher, DB, Schenck, A, Lockhart, PJ, Christodoulou, J, and Tan, TY
- Abstract
Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.
- Published
- 2022
5. Histone H3.3 beyond cancer: Germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients
- Author
-
Bryant, L. (Laura), Li, D. (Dong), Cox, S.G. (Samuel G.), Marchione, D. (Dylan), Joiner, E.F. (Evan F.), Wilson, K. (Khadija), Janssen, K. (Kevin), Lee, P. (Pearl), March, K. (Keith), Nair, D. (Divya), Sherr, E. (Elliott), Fregeau, B. (Brieana), Wierenga, K.J. (Klaas J.), Wadley, A. (Alexandrea), Mancini, G.M.S. (Grazia), Powell-Hamilton, N. (Nina), Kamp, J.J.P. (Jacques) van de, Grebe, T. (Theresa), Dean, J. (John), Ross, A.J. (Alison), Crawford, H.P. (Heather P.), Powis, Z. (Zoe), Cho, M.T. (Megan T.), Willing, M.C. (Marcia C.), Manwaring, L. (Linda), Schot, R. (Rachel), Nava, C. (Caroline), Afenjar, A. (Alexandra), Lessel, D. (Davor), Wagner, M. (Matias), Klopstock, T. (Thomas), Winkelmann, B., Catarino, C.B. (Claudia B.), Retterer, K. (Kyle), Schuette, J.L. (Jane L.), Innis, J.W. (Jeffrey), Pizzino, A. (Amy), Lüttgen, S. (Sabine), Denecke, J. (Jonas), Strom, T.M. (Tim), Monaghan, K.G. (Kristin G.), Yuan, Z.-F. (Zuo-Fei), Dubbs, H. (Holly), Bend, R. (Renee), Lee, J.A. (Jennifer A.), Lyons, M.J. (Michael J.), Hoefele, J. (Julia), Günthner, R. (Roman), Reutter, H. (Heiko), Keren, B. (Boris), Radtke, K. (Kelly), Sherbini, O. (Omar), Mrokse, C. (Cameron), Helbig, K.L. (Katherine L.), Odent, S. (Sylvie), Cogne, B. (Benjamin), Mercier, S. (Sandra), Bezieau, S. (Stephane), Besnard, T. (Thomas), Kury, S. (Sebastien), Redon, R. (Richard), Reinson, K. (Karit), Wojcik, M.H. (Monica H.), Õunap, K. (Katrin), Ilves, P. (Pilvi), Innes, A.M. (A Micheil), Kernohan, K.D. (Kristin), Costain, G. (Gregory), Meyn, M.S. (M Stephen), Chitayat, D. (David), Zackai, E. (Elaine), Lehman, A. (Anna), Kitson, H. (Hilary), Martin, M.G. (Martin G.), Martinez-Agosto, J.A. (Julian A.), Nelson, S.F. (Stan F.), Palmer, C.G.S. (Christina G S), Papp, J.C. (Jeanette C.), Parker, N.H. (Neil H.), Sinsheimer, J.S. (Janet S.), Vilain, E. (Eric), Wan, J. (Jijun), Yoon, A.J. (Amanda J.), Zheng, A. (Allison), Brimble, E. (Elise), Ferrero, G.B. (Giovanni Battista), Radio, F.C. (Francesca Clementina), Carli, D. (Diana), Barresi, S. (Sabina), Brusco, A. (Alfredo), Tartaglia, M. (Marco), Thomas, J.M. (Jennifer Muncy), Umana, L. (Luis), Weiss, M.M. (Marjan M.), Gotway, G. (Garrett), Stuurman, K.E. (Kyra), Thompson, M.L. (Michelle L.), McWalter, K. (Kirsty), Stumpel, C.T.R.M. (Constance T R M), Stevens, S.J.C. (Servi J C), Stegmann, A.P.A. (Alexander P A), Tveten, K. (Kristian), Vøllo, A. (Arve), Prescott, T. (Trine), Fagerberg, C. (Christina), Laulund, L.W. (Lone Walentin), Larsen, M.J. (Martin J.), Byler, M. (Melissa), Lebel, R.R. (Robert Roger), Hurst, A.C. (Anna C.), Dean, J. (Joy), Schrier Vergano, S.A. (Samantha A.), Norman, J. (Jennifer), Mercimek-Andrews, S. (Saadet), Neira, J. (Juanita), Van Allen, M.I. (Margot I.), Longo, N. (Nicola), Sellars, E. (Elizabeth), Louie, R.J. (Raymond J.), Cathey, S.S. (Sara S.), Brokamp, E. (Elly), Héron, D. (Delphine), Snyder, M. (Molly), Vanderver, A. (Adeline), Simon, C. (Celeste), de la Cruz, X. (Xavier), Padilla, N. (Natália), Crump, J.G. (J Gage), Chung, W. (Wendy), Garcia, B. (Benjamin), Hakonarson, H. (Hakon), Bhoj, E.J. (Elizabeth J.), Bryant, L. (Laura), Li, D. (Dong), Cox, S.G. (Samuel G.), Marchione, D. (Dylan), Joiner, E.F. (Evan F.), Wilson, K. (Khadija), Janssen, K. (Kevin), Lee, P. (Pearl), March, K. (Keith), Nair, D. (Divya), Sherr, E. (Elliott), Fregeau, B. (Brieana), Wierenga, K.J. (Klaas J.), Wadley, A. (Alexandrea), Mancini, G.M.S. (Grazia), Powell-Hamilton, N. (Nina), Kamp, J.J.P. (Jacques) van de, Grebe, T. (Theresa), Dean, J. (John), Ross, A.J. (Alison), Crawford, H.P. (Heather P.), Powis, Z. (Zoe), Cho, M.T. (Megan T.), Willing, M.C. (Marcia C.), Manwaring, L. (Linda), Schot, R. (Rachel), Nava, C. (Caroline), Afenjar, A. (Alexandra), Lessel, D. (Davor), Wagner, M. (Matias), Klopstock, T. (Thomas), Winkelmann, B., Catarino, C.B. (Claudia B.), Retterer, K. (Kyle), Schuette, J.L. (Jane L.), Innis, J.W. (Jeffrey), Pizzino, A. (Amy), Lüttgen, S. (Sabine), Denecke, J. (Jonas), Strom, T.M. (Tim), Monaghan, K.G. (Kristin G.), Yuan, Z.-F. (Zuo-Fei), Dubbs, H. (Holly), Bend, R. (Renee), Lee, J.A. (Jennifer A.), Lyons, M.J. (Michael J.), Hoefele, J. (Julia), Günthner, R. (Roman), Reutter, H. (Heiko), Keren, B. (Boris), Radtke, K. (Kelly), Sherbini, O. (Omar), Mrokse, C. (Cameron), Helbig, K.L. (Katherine L.), Odent, S. (Sylvie), Cogne, B. (Benjamin), Mercier, S. (Sandra), Bezieau, S. (Stephane), Besnard, T. (Thomas), Kury, S. (Sebastien), Redon, R. (Richard), Reinson, K. (Karit), Wojcik, M.H. (Monica H.), Õunap, K. (Katrin), Ilves, P. (Pilvi), Innes, A.M. (A Micheil), Kernohan, K.D. (Kristin), Costain, G. (Gregory), Meyn, M.S. (M Stephen), Chitayat, D. (David), Zackai, E. (Elaine), Lehman, A. (Anna), Kitson, H. (Hilary), Martin, M.G. (Martin G.), Martinez-Agosto, J.A. (Julian A.), Nelson, S.F. (Stan F.), Palmer, C.G.S. (Christina G S), Papp, J.C. (Jeanette C.), Parker, N.H. (Neil H.), Sinsheimer, J.S. (Janet S.), Vilain, E. (Eric), Wan, J. (Jijun), Yoon, A.J. (Amanda J.), Zheng, A. (Allison), Brimble, E. (Elise), Ferrero, G.B. (Giovanni Battista), Radio, F.C. (Francesca Clementina), Carli, D. (Diana), Barresi, S. (Sabina), Brusco, A. (Alfredo), Tartaglia, M. (Marco), Thomas, J.M. (Jennifer Muncy), Umana, L. (Luis), Weiss, M.M. (Marjan M.), Gotway, G. (Garrett), Stuurman, K.E. (Kyra), Thompson, M.L. (Michelle L.), McWalter, K. (Kirsty), Stumpel, C.T.R.M. (Constance T R M), Stevens, S.J.C. (Servi J C), Stegmann, A.P.A. (Alexander P A), Tveten, K. (Kristian), Vøllo, A. (Arve), Prescott, T. (Trine), Fagerberg, C. (Christina), Laulund, L.W. (Lone Walentin), Larsen, M.J. (Martin J.), Byler, M. (Melissa), Lebel, R.R. (Robert Roger), Hurst, A.C. (Anna C.), Dean, J. (Joy), Schrier Vergano, S.A. (Samantha A.), Norman, J. (Jennifer), Mercimek-Andrews, S. (Saadet), Neira, J. (Juanita), Van Allen, M.I. (Margot I.), Longo, N. (Nicola), Sellars, E. (Elizabeth), Louie, R.J. (Raymond J.), Cathey, S.S. (Sara S.), Brokamp, E. (Elly), Héron, D. (Delphine), Snyder, M. (Molly), Vanderver, A. (Adeline), Simon, C. (Celeste), de la Cruz, X. (Xavier), Padilla, N. (Natália), Crump, J.G. (J Gage), Chung, W. (Wendy), Garcia, B. (Benjamin), Hakonarson, H. (Hakon), and Bhoj, E.J. (Elizabeth J.)
- Abstract
Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.
- Published
- 2020
- Full Text
- View/download PDF
6. Un Revival haut en couleur ! (Re)présenter la polychromie antique dans la sculpture contemporaine
- Author
-
Besnard, T, Université de Pau et des Pays de l'Adour (UPPA), Maud Mulliez, Laboratoire d'Etudes en Sciences des Arts (LESA), Aix Marseille Université (AMU), Caroline Delevoie, and Rémy Chapoulie
- Subjects
[SHS.ART]Humanities and Social Sciences/Art and art history ,contemporary art ,histoire de l’art ,[SHS]Humanities and Social Sciences ,reception studies ,art history ,polychromie ,art actuel ,polychromy ,réception de l’antiquité ,[SHS.HIST]Humanities and Social Sciences/History ,sculpture ,ComputingMilieux_MISCELLANEOUS ,art contemporain - Abstract
International audience; Classical Reception Studies have grown considerably in recent years. Nevertheless, if the literary field is particularly concerned, the field of contemporary art, even extreme contemporary art, remains to be studied. Thus, from a data package of works developed between 2014 and 2017, we will try to establish a typology of ancient sculpture most often used by current artists to produce “neo-neo” works. A more specific interest will be brought to the question of the polychromy of these re-creations taking as reference the productions of Francesco Vezzoli, Yinka Shonibare, Omar Hassan and many others. The research carried out by Ulrike and Vinzenz Brinkmann will be studied too. Finally, we will try to explain why Antiquity still fascinates artists from Europe to Asia.; Les Classical Reception Studies, à savoir les études portées sur les modalités de reprises et de réception de l’Antiquité, se sont multipliées ces dernières années. Il n’en demeure pas moins que si le domaine littéraire est particulièrement concerné, le domaine de l’art contemporain, voire ultra-contemporain, reste encore à étudier. Ainsi, à partir d’un corpus d’œuvres élaboré entre 2014 et 2017, nous tenterons d’établir une typologie des sculptures antiques les plus reprises par les artistes actuels afin de produire des œuvres “néo-néo” 1. Un intérêt plus spécifique sera porté à la question de la polychromie de ces re-créations en prenant pour référence les productions de Francesco Vezzoli de Yinka Shonibare et d’Omar Hassan ainsi que les recherches menées par Ulrike et Vinzenz Brinkmann. Enfin, nous tenterons d’expliquer, en guise d’ouverture, pourquoi l’Antiquité fascine encore aujourd’hui les artistes tant européens, qu’américains ou asiatiques.
- Published
- 2019
7. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability
- Author
-
Cogne, B., Ehresmann, S., Beauregard-Lacroix, E., Rousseau, J., Besnard, T., Garcia, T., Petrovski, S., Avni, S., McWalter, K., Blackburn, P.R., Sanders, S.J., Uguen, K., Harris, J., Cohen, J.S., Blyth, M., Lehman, A., Berg, J ., Li, M.H., Kini, U., Joss, S., Lippe, C., Gordon, C.T., Humberson, J.B., Robak, L., Scott, D.A., Sutton, V.R., Skraban, C.M., Johnston, J.J., Poduri, A., Nordenskjold, M., Shashi, V., Gerkes, E.H., Bongers, E.M.H.F., Gilissen, C.F., Zarate, Y.A., Kvarnung, M., Lally, K.P., Kulch, P.A., Daniels, B., Hernandez-Garcia, A., Stong, N., McGaughran, J., Retterer, K., Tveten, K., Sullivan, J., Geisheker, M.R., Stray-Pedersen, A., Tarpinian, J.M., Klee, E.W., Sapp, J.C., Zyskind, J., Holla, O.L., Bedoukian, E., Filippini, F., Guimier, A., Picard, A., Busk, O.L., Punetha, J., Pfundt, R.P., Lindstrand, A., Nordgren, A., Kalb, F., Desai, M., Ebanks, A.H., Jhangiani, S.N., Dewan, T., Akdemir, Z.H. Coban, Telegrafi, A., Zackai, E.H., Begtrup, A., Song, X., Toutain, A., Wentzensen, I.M., Odent, S., Bonneau, D., Latypova, X., Deb, W., Redon, S., Bilan, F., Legendre, M., Troyer, C., Whitlock, K., Caluseriu, O., Murphree, M.I., Pichurin, P.N., Agre, K., Gavrilova, R., Rinne, T.K., Park, M., Shain, C., Heinzen, E.L., Xiao, R., Amiel, J., Lyonnet, S., Isidor, B., Biesecker, L.G., Lowenstein, D., Posey, J.E., Denomme-Pichon, A.S., Ferec, C., et al., Cogne, B., Ehresmann, S., Beauregard-Lacroix, E., Rousseau, J., Besnard, T., Garcia, T., Petrovski, S., Avni, S., McWalter, K., Blackburn, P.R., Sanders, S.J., Uguen, K., Harris, J., Cohen, J.S., Blyth, M., Lehman, A., Berg, J ., Li, M.H., Kini, U., Joss, S., Lippe, C., Gordon, C.T., Humberson, J.B., Robak, L., Scott, D.A., Sutton, V.R., Skraban, C.M., Johnston, J.J., Poduri, A., Nordenskjold, M., Shashi, V., Gerkes, E.H., Bongers, E.M.H.F., Gilissen, C.F., Zarate, Y.A., Kvarnung, M., Lally, K.P., Kulch, P.A., Daniels, B., Hernandez-Garcia, A., Stong, N., McGaughran, J., Retterer, K., Tveten, K., Sullivan, J., Geisheker, M.R., Stray-Pedersen, A., Tarpinian, J.M., Klee, E.W., Sapp, J.C., Zyskind, J., Holla, O.L., Bedoukian, E., Filippini, F., Guimier, A., Picard, A., Busk, O.L., Punetha, J., Pfundt, R.P., Lindstrand, A., Nordgren, A., Kalb, F., Desai, M., Ebanks, A.H., Jhangiani, S.N., Dewan, T., Akdemir, Z.H. Coban, Telegrafi, A., Zackai, E.H., Begtrup, A., Song, X., Toutain, A., Wentzensen, I.M., Odent, S., Bonneau, D., Latypova, X., Deb, W., Redon, S., Bilan, F., Legendre, M., Troyer, C., Whitlock, K., Caluseriu, O., Murphree, M.I., Pichurin, P.N., Agre, K., Gavrilova, R., Rinne, T.K., Park, M., Shain, C., Heinzen, E.L., Xiao, R., Amiel, J., Lyonnet, S., Isidor, B., Biesecker, L.G., Lowenstein, D., Posey, J.E., Denomme-Pichon, A.S., and Ferec, C., et al.
- Abstract
Contains fulltext : 202928.pdf (publisher's version ) (Open Access), Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.
- Published
- 2019
8. Identification of a new VHL exon and complex splicing alterations in familial erythrocytosis or von Hippel-Lindau disease
- Author
-
Lenglet, M. Robriquet, F. Schwarz, K. Camps, C. Couturier, A. Hoogewijs, D. Buffet, A. Knight, S.J.L. Gad, S. Couvé, S. Chesnel, F. Pacault, M. Lindenbaum, P. Job, S. Dumont, S. Besnard, T. Cornec, M. Dreau, H. Pentony, M. Kvikstad, E. Deveaux, S. Burnichon, N. Ferlicot, S. Vilaine, M. Mazzella, J.-M. Airaud, F. Garrec, C. Heidet, L. Irtan, S. Mantadakis, E. Bouchireb, K. Debatin, K.-M. Redon, R. Bezieau, S. Brigitte Bressac-de, P. Teh, B.T. Girodon, F. Randi, M.-L. Putti, M.C. Bours, V. Van Wijk, R. Göthert, J.R. Kattamis, A. Janin, N. Bento, C. Taylor, J.C. Arlot-Bonnemains, Y. Richard, S. Gimenez-Roqueplo, A.-P. Cario, H. Gardie, B.
- Subjects
endocrine system diseases ,urologic and male genital diseases ,neoplasms ,female genital diseases and pregnancy complications - Abstract
Chuvash polycythemia is an autosomal recessive form of erythrocytosis associated with a homozygous p.Arg200Trp mutation in the von Hippel-Lindau (VHL) gene. Since this discovery, additional VHL mutations have been identified in patients with congenital erythrocytosis, in a homozygous or compound-heterozygous state. VHL is a major tumor suppressor gene, mutations in which were first described in patients presenting with VHL disease, which is characterized by the development of highly vascularized tumors. Here, we identify a new VHL cryptic exon (termed E19) deep in intron 1 that is naturally expressed in many tissues. More importantly, we identify mutations in E19 in 7 families with erythrocytosis (1 homozygous case and 6 compound-heterozygous cases with a mutation in E19 in addition to a mutation in VHL coding sequences) and in 1 large family with typical VHL disease but without any alteration in the other VHL exons. In this study, we show that the mutations induced a dysregulation of VHL splicing with excessive retention of E19 and were associated with a downregulation of VHL protein expression. In addition, we demonstrate a pathogenic role for synonymous mutations in VHL exon 2 that altered splicing through E2-skipping in 5 families with erythrocytosis or VHL disease. In all the studied cases, the mutations differentially affected splicing, correlating with phenotype severity. This study demonstrates that cryptic exon retention and exon skipping are new VHL alterations and reveals a novel complex splicing regulation of the VHL gene. These findings open new avenues for diagnosis and research regarding the VHL-related hypoxia-signaling pathway. © 2018 by The American Society of Hematology.
- Published
- 2018
9. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability
- Author
-
Kury, S., Woerden, G.M. van, Besnard, T., Onori, M.P., Latypova, X., Towne, M.C., Cho, M.T., Prescott, T.E., Ploeg, M.A., Sanders, S., Stessman, H.A.F., Pujol, A., Distel, ben, Robak, L.A., Bernstein, J.A., Denomme-Pichon, A.S., Lesca, G., Sellars, E.A., Berg, J., Carre, W., Busk, O.L., Bon, B.W.M. van, Waugh, J.L., Deardorff, M., Hoganson, G.E., Bosanko, K.B., Johnson, D.S., Dabir, T., Holla, O.L., Sarkar, A., Tveten, K., Bellescize, J. de, Braathen, G.J., Terhal, P.A., Grange, D.K., Haeringen, A. van, Lam, C., Mirzaa, G., Burton, J., Bhoj, E.J., Douglas, J., Santani, A.B., Nesbitt, A.I., Helbig, K.L., Andrews, M.V., Begtrup, A., Tang, S., Gassen, K.L.I. van, Juusola, J., Foss, K., Enns, G.M., Moog, U., Hinderhofer, K., Paramasivam, N., Lincoln, S., Kusako, B.H., Lindenbaum, P., Charpentier, E., Nowak, C.B., Cherot, E., Simonet, T., Ruivenkamp, C.A.L., Hahn, S., Brownstein, C.A., Xia, F., Schmitt, S., Deb, W., Bonneau, D., Nizon, M., Quinquis, D., Chelly, J., Rudolf, G., Sanlaville, D., Parent, P., Gilbert-Dussardier, B., Toutain, A., Sutton, V.R., Thies, J., Peart-Vissers, L.E.L.M., Boisseau, P., Vincent, M., Grabrucker, A.M., Dubourg, C., Tan, W.H., Verbeek, N.E., Granzow, M., Santen, G.W.E., Shendure, J., Isidor, B., Pasquier, L., Redon, R., Yang, Y.P., State, M.W., Kleefstra, T., Cogne, B., Petrovski, S., Retterer, K., Eichler, E.E., Rosenfeld, J.A., Agrawal, P.B., Bezieau, S., Odent, S., Elgersma, Y., Mercier, S., Undiagnosed Dis Network, GEM HUGO, Deciphering Dev Dis Study, Service de génétique médicale [CHU Nantes], Centre hospitalier universitaire de Nantes (CHU Nantes), Department of Neuroscience [Rotterdam, the Netherlands], Erasmus University Medical Center [Rotterdam] (Erasmus MC), Expertise Center for Neurodevelopmental Disorders [Rotterdam, the Netherlands] (ENCORE), Genomics Program and Division of Genetics [Boston, USA], Harvard Medical School [Boston] (HMS)-Boston Children's Hospital-The Manton Center for Orphan Disease Research, Gene Discovery Core [Boston, MA, USA] ( The Manton Center for Orphan Disease Research), Harvard Medical School [Boston] (HMS)-Boston Children's Hospital, GeneDx [Gaithersburg, MD, USA], Department of Medical Genetics [Skien, Norway], Telemark Hospital Trust [Skien, Norway], Department of Psychiatry [San Francisco, CA, USA], University of California [San Francisco] (UCSF), University of California-University of California, Department of Genome Sciences [Seattle] (GS), University of Washington [Seattle], Department of Pharmacology [Omaha, NE, USA], Creighton University Medical School [Omaha, NE, USA], Neurometabolic Diseases Laboratory [Barcelona, Spain], Institut d'Investigació Biomèdica de Bellvitge [Barcelone] (IDIBELL), Centre for Biomedical Research on Rare Diseases [Barcelona, Spain] (CIBERER), Hospital Sant Joan de Déu [Barcelona], Institució Catalana de Recerca i Estudis Avançats (ICREA), Department of Medical Biochemistry [Amsterdam, the Netherlands] (Academic Medical Center), University of Amsterdam [Amsterdam] (UvA), Department of Molecular and Human Genetics [Houston, USA], Baylor College of Medecine, Department of Pediatrics [Stanford], Stanford Medicine, Stanford University-Stanford University, Département de Biochimie et Génétique [Angers], Université d'Angers (UA)-Centre Hospitalier Universitaire d'Angers (CHU Angers), PRES Université Nantes Angers Le Mans (UNAM)-PRES Université Nantes Angers Le Mans (UNAM), Biologie Neurovasculaire et Mitochondriale Intégrée (BNMI), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université d'Angers (UA), Service de Génétique [HCL, Lyon] (Centre de Référence des Anomalies du Développement), Hospices civils de Lyon (HCL), Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Section of Genetics and Metabolism [Little Rock, AR, USA], University of Arkansas for Medical Sciences (UAMS), Molecular and Clinical Medicine [Dundee, UK] (School of Medicine), University of Dundee [UK]-Ninewells Hospital & Medical School [Dundee, UK], Laboratoire de Génétique Moléculaire & Génomique [CHU Rennes], CHU Pontchaillou [Rennes], Department of Human Genetics [Nijmegen], Radboud University Medical Center [Nijmegen], Department of Neurology [Boston], Harvard Medical School [Boston] (HMS)-Massachusetts General Hospital [Boston], Department of Pediatrics [Philadelphia, PA, USA] (Division of Genetics), Children’s Hospital of Philadelphia (CHOP ), Department of Pediatrics [Chicago, IL, USA] (College of Medicine), University of Illinois [Chicago] (UIC), University of Illinois System-University of Illinois System, Sheffield Children's NHS Foundation Trust, Northern Ireland Regional Genetics Centre [Belfast, UK], Belfast City Hospital-Belfast Health and Social Care Trust, Nottingham Regional Genetics Service [Nottingham, UK], City Hospital Campus [Nottingham, UK]-Nottingham University Hospitals NHS Trust [UK], Département d'Epilepsie, Sommeil et Neurophysiologie Pédiatrique [HCL, Lyon], Hospices Civils de Lyon (HCL), Department of Genetics [Utrecht, the Netherlands], University Medical Center [Utrecht], Department of Pediatrics [Saint Louis, MO, USA] (Division of Genetics and Genomic Medicine), Washington University in Saint Louis (WUSTL), Department of Clinical Genetics [Leiden, the Netherlands], Leiden University Medical Center (LUMC), Department of Pediatrics [Seattle, WA, USA] (Division of Genetic Medicine), University of Washington [Seattle]-Seattle Children’s Hospital, Center for Integrative Brain Research [Seattle, WA, USA], University of Washington [Seattle]-Seattle Children's Research Institute, The Center for Applied Genomics [Philadelphia, PA, USA], Division of Human Genetics [Philadelphia, PA, USA], Department of Pathology and Laboratory Medicine [Philadelphia, PA, USA], University of Pennsylvania [Philadelphia]-Perelman School of Medicine, University of Pennsylvania [Philadelphia], Department of Pathology and Laboratory Medicine [Philadelphia, PA, USA] (Perelman School of Medicine), Division of Clinical Genomics [Aliso Viejo, CA, USA], Ambry Genetics [Aliso Viejo, CA, USA], Division of Neurology [Philadelphia, PA, USA], Institute of Human Genetics [Heidelberg, Germany], Universität Heidelberg [Heidelberg], University of Heidelberg, Medical Faculty, unité de recherche de l'institut du thorax UMR1087 UMR6291 (ITX), Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Diagnostic Génétique [CHU Strasbourg], Université de Strasbourg (UNISTRA)-CHU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg (UNISTRA), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Service de Neurologie [CHU Strasbourg], Hôpital de Hautepierre [Strasbourg]-Centre Hospitalier Universitaire de Strasbourg (CHU de Strasbourg ), Département de génétique médicale en pédiatrie [CHRU Brest], Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Service de Génétique [CHU Poitiers], Centre hospitalier universitaire de Poitiers (CHU Poitiers), Service de Génétique [CHRU Tours], Centre Hospitalier Régional Universitaire de Tours (CHRU TOURS), Department of Biological Sciences [Limerick, Ireland], University of Limerick (UL), Bernal Institute [Limerick, Ireland], Howard Hughes Medical Institute [Seattle], Howard Hughes Medical Institute (HHMI), Institut de Génétique et Développement de Rennes (IGDR), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Service de Génétique Clinique [CHU Rennes] (Réseau de Génétique et Génomique Médicale), Hôpitaux Universitaires du Grand Ouest, The Wellcome Trust Sanger Institute [Cambridge], Department of Medicine [Melbourne, Australia], University of Melbourne-Austin Health, Division of Newborn Medicine [Boston, MA, USA], Immunobiology of Human αβ and γδ T Cells and Immunotherapeutic Applications (CRCINA-ÉQUIPE 1), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), Neurosciences, Physiopathologie Cardiovasculaire et Mitochondriale (MITOVASC), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Régional Universitaire de Tours (CHRU Tours), Univ Angers, Okina, University of California [San Francisco] (UC San Francisco), University of California (UC)-University of California (UC), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de génétique moléculaire et génomique médicale [CHU Rennes], Nottingham University Hospitals NHS Trust (NUH)-City Hospital Campus [Nottingham, UK], Universiteit Leiden-Universiteit Leiden, Department of Pediatrics [Seattle, WA, USA], University of Pennsylvania-Perelman School of Medicine, University of Pennsylvania, Universität Heidelberg [Heidelberg] = Heidelberg University, Unité de recherche de l'institut du thorax (ITX-lab), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Service de génétique clinique [Rennes], Université de Rennes (UR)-CHU Pontchaillou [Rennes]-hôpital Sud, Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes), Amsterdam Gastroenterology Endocrinology Metabolism, Medical Biochemistry, and Bernardo, Elizabeth
- Subjects
0301 basic medicine ,Male ,de novo mutations ,AMPAR ,medicine.disease_cause ,Inbred C57BL ,Mice ,0302 clinical medicine ,Intellectual disability ,CAMK2A ,Exome ,Phosphorylation ,Genetics (clinical) ,Genetics ,Neurons ,Mutation ,[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,Brain ,Phenotype ,NMDAR ,intellectual disability ,Female ,Signal transduction ,Rare cancers Radboud Institute for Health Sciences [Radboudumc 9] ,Signal Transduction ,Glutamic Acid ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Biology ,Article ,Cell Line ,03 medical and health sciences ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,medicine ,Journal Article ,Animals ,Humans ,Protein kinase A ,Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,synaptic plasticity ,medicine.disease ,Mice, Inbred C57BL ,CAMK2 ,CAMK2B ,030104 developmental biology ,HEK293 Cells ,Synaptic plasticity ,Calcium-Calmodulin-Dependent Protein Kinase Type 2 ,030217 neurology & neurosurgery ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
Contains fulltext : 182539.pdf (Publisher’s version ) (Closed access) Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.
- Published
- 2017
- Full Text
- View/download PDF
10. Whole genome sequencing identifies a de novo 2.1 Mb balanced paracentric inversion disrupting FOXP1 and leading to severe intellectual disability
- Author
-
Vuillaume, M.-L., primary, Cogné, B., additional, Jeanne, M., additional, Boland, A., additional, Ung, D.-C., additional, Quinquis, D., additional, Besnard, T., additional, Deleuze, J.-F., additional, Redon, R., additional, Bézieau, S., additional, Laumonnier, F., additional, and Toutain, A., additional
- Published
- 2018
- Full Text
- View/download PDF
11. Okur‐Chung neurodevelopmental syndrome: Eight additional cases with implications on phenotype and genotype expansion
- Author
-
Chiu, A.T.G., primary, Pei, S.L.C., additional, Mak, C.C.Y., additional, Leung, G.K.C., additional, Yu, M.H.C., additional, Lee, S.L., additional, Vreeburg, M., additional, Pfundt, R., additional, van der Burgt, I., additional, Kleefstra, T., additional, Frederic, T.M.‐T., additional, Nambot, S., additional, Faivre, L., additional, Bruel, A.‐L., additional, Rossi, M., additional, Isidor, B., additional, Küry, S., additional, Cogne, B., additional, Besnard, T., additional, Willems, M., additional, Reijnders, M.R.F., additional, and Chung, B.H.Y., additional
- Published
- 2018
- Full Text
- View/download PDF
12. De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder
- Author
-
Lessel, D., Schob, C., Kury, S., Reinders, M.R.F., Harel, T., Eldomery, M.K., Coban-Akdemir, Z., Denecke, J., Edvardson, S., Colin, E., Stegmann, A.P., Gerkes, E.H., Tessarech, M., Bonneau, D., Barth, M., Besnard, T., Cogne, B., Revah-Politi, A., Strom, T.M., Rosenfeld, J.A., Yang, Y, Posey, J.E., Immken, L., Oundjian, N., Helbig, K.L., Meeks, N., Zegar, K., Morton, J., Schieving, J.H., Claasen, A., Huentelman, M., Narayanan, V., Ramsey, K., Brunner, H.G., Elpeleg, O., Mercier, S., Bezieau, S., Kubisch, C., Kleefstra, T., Kindler, S., Lupski, J.R., Kreienkamp, H.J., Lessel, D., Schob, C., Kury, S., Reinders, M.R.F., Harel, T., Eldomery, M.K., Coban-Akdemir, Z., Denecke, J., Edvardson, S., Colin, E., Stegmann, A.P., Gerkes, E.H., Tessarech, M., Bonneau, D., Barth, M., Besnard, T., Cogne, B., Revah-Politi, A., Strom, T.M., Rosenfeld, J.A., Yang, Y, Posey, J.E., Immken, L., Oundjian, N., Helbig, K.L., Meeks, N., Zegar, K., Morton, J., Schieving, J.H., Claasen, A., Huentelman, M., Narayanan, V., Ramsey, K., Brunner, H.G., Elpeleg, O., Mercier, S., Bezieau, S., Kubisch, C., Kleefstra, T., Kindler, S., Lupski, J.R., and Kreienkamp, H.J.
- Abstract
Contains fulltext : 182457.pdf (publisher's version ) (Closed access), DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation. All amino acid changes are located within highly conserved helicase motifs and were found to either impair ATPase activity or RNA recognition in different in vitro assays. Moreover, protein variants exhibit an increased propensity to trigger stress granule (SG) formation resulting in global translation inhibition. Thus, our findings highlight the prominent role of translation control in development and function of the central nervous system and also provide molecular insight into how DHX30 dysfunction might cause a neurodevelopmental disorder.
- Published
- 2017
13. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability
- Author
-
Küry, S. (Sébastien), Woerden, G.M. (Geeske) van, Besnard, T. (Thomas), Proietti-Onori, M. (Martina), Latypova, X. (Xénia), Towne, M.C. (Meghan C.), Cho, M.T. (Megan T.), Prescott, T. (Trine), Ploeg, M.A. (Melissa), Sanders, S. (Stephan), Stessman, H.A.F. (Holly A F), Pujol, A. (Aurora), Distel, B. (Ben), Robak, L.A. (Laurie A.), Bernstein, J.A. (Jonathan A.), Denommé-Pichon, A.-S. (Anne-Sophie), Lesca, G. (Gaëtan), Sellars, E.A. (Elizabeth A.), Berg, J. (Jonathan), Carré, W. (Wilfrid), Busk, ØL. (Øyvind Løvold), Bon, B. (Bregje) van, Waugh, J.L. (Jeff L.), Deardorff, M.A. (Matthew), Hoganson, G.E. (George E.), Bosanko, K.B. (Katherine B.), Johnson, D.S. (Diana S.), Dabir, T. (Tabib), Holla, ØL. (Øystein Lunde), Sarkar, A. (Ajoy), Tveten, K. (Kristian), de Bellescize, J. (Julitta), Braathen, G.J. (Geir J.), Terhal, P. (Paulien), Grange, D.K. (Dorothy K.), Haeringen, A. (Arie) van, Lam, C. (Christina), Mirzaa, G.M. (Ghayda), Burton, J. (Jennifer), Bhoj, E.J. (Elizabeth J.), Douglas, J. (Jessica), Santani, A.B. (Avni B.), Nesbitt, A.I. (Addie I.), Helbig, K.L. (Katherine L.), Andrews, M.V. (Marisa V.), Begtrup, A. (Amber), Tang, S. (Sha), van Gassen, K.L.I. (Koen L.I.), Juusola, J. (Jane), Foss, K. (Kimberly), Enns, G. (Gregory), Moog, U. (Ute), Hinderhofer, K. (Katrin), Paramasivam, N. (Nagarajan), Lincoln, S. (Sharyn), Kusako, B.H. (Brandon H.), Lindenbaum, P. (Pierre), Charpentier, E. (Eric), Nowak, C.B. (Catherine B.), Cherot, E. (Elouan), Simonet, T. (Thomas), Ruivenkamp, C.A. (Claudia), Hahn, S. (Sihoun), Brownstein, C.A. (Catherine A.), Xia, F. (Fan), Schmitt, S. (Sébastien), Deb, W. (Wallid), Bonneau, D. (Dominique), Nizon, M. (Mathilde), Quinquis, D. (Delphine), Chelly, J. (Jamel), Rudolf, G. (Gabrielle), Sanlaville, D. (Damien), Parent, P. (Philippe), Gilbert-Dussardier, B. (Brigitte), Toutain, A. (Annick), Sutton, V.R. (V. Reid), Thies, J. (Jenny), Peart-Vissers, L.E.L.M. (Lisenka E L M), Boisseau, P. (Pierre), Vincent, M. (Marie), Grabrucker, A.M. (Andreas M.), Dubourg, C. (Christèle), Tan, W.-H. (Wen-Hann), Verbeek, N.E. (Nienke), Granzow, M. (Martin), Santen, G.W.E. (Gijs), Shendure, J. (Jay), Isidor, B. (Bertrand), Pasquier, L. (Laurent), Redon, R. (Richard), Yang, Y. (Yaping), State, M.W. (Matthew), Kleefstra, T. (Tjitske), Cogné, B. (Benjamin), Petrovski, S. (Slavé), Retterer, K. (Kyle), Eichler, E.E. (Evan), Rosenfeld, J.A. (Jill), Agrawal, P.B. (Pankaj B.), Bézieau, S. (Stéphane), Odent, S. (Sylvie), Elgersma, Y. (Ype), Mercier, S. (Sandra), Küry, S. (Sébastien), Woerden, G.M. (Geeske) van, Besnard, T. (Thomas), Proietti-Onori, M. (Martina), Latypova, X. (Xénia), Towne, M.C. (Meghan C.), Cho, M.T. (Megan T.), Prescott, T. (Trine), Ploeg, M.A. (Melissa), Sanders, S. (Stephan), Stessman, H.A.F. (Holly A F), Pujol, A. (Aurora), Distel, B. (Ben), Robak, L.A. (Laurie A.), Bernstein, J.A. (Jonathan A.), Denommé-Pichon, A.-S. (Anne-Sophie), Lesca, G. (Gaëtan), Sellars, E.A. (Elizabeth A.), Berg, J. (Jonathan), Carré, W. (Wilfrid), Busk, ØL. (Øyvind Løvold), Bon, B. (Bregje) van, Waugh, J.L. (Jeff L.), Deardorff, M.A. (Matthew), Hoganson, G.E. (George E.), Bosanko, K.B. (Katherine B.), Johnson, D.S. (Diana S.), Dabir, T. (Tabib), Holla, ØL. (Øystein Lunde), Sarkar, A. (Ajoy), Tveten, K. (Kristian), de Bellescize, J. (Julitta), Braathen, G.J. (Geir J.), Terhal, P. (Paulien), Grange, D.K. (Dorothy K.), Haeringen, A. (Arie) van, Lam, C. (Christina), Mirzaa, G.M. (Ghayda), Burton, J. (Jennifer), Bhoj, E.J. (Elizabeth J.), Douglas, J. (Jessica), Santani, A.B. (Avni B.), Nesbitt, A.I. (Addie I.), Helbig, K.L. (Katherine L.), Andrews, M.V. (Marisa V.), Begtrup, A. (Amber), Tang, S. (Sha), van Gassen, K.L.I. (Koen L.I.), Juusola, J. (Jane), Foss, K. (Kimberly), Enns, G. (Gregory), Moog, U. (Ute), Hinderhofer, K. (Katrin), Paramasivam, N. (Nagarajan), Lincoln, S. (Sharyn), Kusako, B.H. (Brandon H.), Lindenbaum, P. (Pierre), Charpentier, E. (Eric), Nowak, C.B. (Catherine B.), Cherot, E. (Elouan), Simonet, T. (Thomas), Ruivenkamp, C.A. (Claudia), Hahn, S. (Sihoun), Brownstein, C.A. (Catherine A.), Xia, F. (Fan), Schmitt, S. (Sébastien), Deb, W. (Wallid), Bonneau, D. (Dominique), Nizon, M. (Mathilde), Quinquis, D. (Delphine), Chelly, J. (Jamel), Rudolf, G. (Gabrielle), Sanlaville, D. (Damien), Parent, P. (Philippe), Gilbert-Dussardier, B. (Brigitte), Toutain, A. (Annick), Sutton, V.R. (V. Reid), Thies, J. (Jenny), Peart-Vissers, L.E.L.M. (Lisenka E L M), Boisseau, P. (Pierre), Vincent, M. (Marie), Grabrucker, A.M. (Andreas M.), Dubourg, C. (Christèle), Tan, W.-H. (Wen-Hann), Verbeek, N.E. (Nienke), Granzow, M. (Martin), Santen, G.W.E. (Gijs), Shendure, J. (Jay), Isidor, B. (Bertrand), Pasquier, L. (Laurent), Redon, R. (Richard), Yang, Y. (Yaping), State, M.W. (Matthew), Kleefstra, T. (Tjitske), Cogné, B. (Benjamin), Petrovski, S. (Slavé), Retterer, K. (Kyle), Eichler, E.E. (Evan), Rosenfeld, J.A. (Jill), Agrawal, P.B. (Pankaj B.), Bézieau, S. (Stéphane), Odent, S. (Sylvie), Elgersma, Y. (Ype), and Mercier, S. (Sandra)
- Abstract
Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.
- Published
- 2017
- Full Text
- View/download PDF
14. ARL6IP1 mutation causes congenital insensitivity to pain, acromutilation and spastic paraplegia
- Author
-
Nizon, M., primary, Küry, S., additional, Péréon, Y., additional, Besnard, T., additional, Quinquis, D., additional, Boisseau, P., additional, Marsaud, T., additional, Magot, A., additional, Mussini, J.-M., additional, Mayrargue, E., additional, Barbarot, S., additional, Bézieau, S., additional, and Isidor, B., additional
- Published
- 2017
- Full Text
- View/download PDF
15. Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome
- Author
-
Sarah E.M. Stephenson, Gregory Costain, Laura E.R. Blok, Michael A. Silk, Thanh Binh Nguyen, Xiaomin Dong, Dana E. Alhuzaimi, James J. Dowling, Susan Walker, Kimberly Amburgey, Robin Z. Hayeems, Lance H. Rodan, Marc A. Schwartz, Jonathan Picker, Sally A. Lynch, Aditi Gupta, Kristen J. Rasmussen, Lisa A. Schimmenti, Eric W. Klee, Zhiyv Niu, Katherine E. Agre, Ilana Chilton, Wendy K. Chung, Anya Revah-Politi, P.Y. Billie Au, Christopher Griffith, Melissa Racobaldo, Annick Raas-Rothschild, Bruria Ben Zeev, Ortal Barel, Sebastien Moutton, Fanny Morice-Picard, Virginie Carmignac, Jenny Cornaton, Nathalie Marle, Orrin Devinsky, Chandler Stimach, Stephanie Burns Wechsler, Bryan E. Hainline, Katie Sapp, Marjolaine Willems, Ange-line Bruel, Kerith-Rae Dias, Carey-Anne Evans, Tony Roscioli, Rani Sachdev, Suzanna E.L. Temple, Ying Zhu, Joshua J. Baker, Ingrid E. Scheffer, Fiona J. Gardiner, Amy L. Schneider, Alison M. Muir, Heather C. Mefford, Amy Crunk, Elizabeth M. Heise, Francisca Millan, Kristin G. Monaghan, Richard Person, Lindsay Rhodes, Sarah Richards, Ingrid M. Wentzensen, Benjamin Cogné, Bertrand Isidor, Mathilde Nizon, Marie Vincent, Thomas Besnard, Amelie Piton, Carlo Marcelis, Kohji Kato, Norihisa Koyama, Tomoo Ogi, Elaine Suk-Ying Goh, Christopher Richmond, David J. Amor, Jessica O. Boyce, Angela T. Morgan, Michael S. Hildebrand, Antony Kaspi, Melanie Bahlo, Rún Friðriksdóttir, Hildigunnur Katrínardóttir, Patrick Sulem, Kári Stefánsson, Hans Tómas Björnsson, Simone Mandelstam, Manuela Morleo, Milena Mariani, Marcello Scala, Andrea Accogli, Annalaura Torella, Valeria Capra, Mathew Wallis, Sandra Jansen, Quinten Waisfisz, Hugoline de Haan, Simon Sadedin, Sze Chern Lim, Susan M. White, David B. Ascher, Annette Schenck, Paul J. Lockhart, John Christodoulou, Tiong Yang Tan, Stephenson, S. E. M., Costain, G., Blok, L. E. R., Silk, M. A., Nguyen, T. B., Dong, X., Alhuzaimi, D. E., Dowling, J. J., Walker, S., Amburgey, K., Hayeems, R. Z., Rodan, L. H., Schwartz, M. A., Picker, J., Lynch, S. A., Gupta, A., Rasmussen, K. J., Schimmenti, L. A., Klee, E. W., Niu, Z., Agre, K. E., Chilton, I., Chung, W. K., Revah-Politi, A., Au, P. Y. B., Griffith, C., Racobaldo, M., Raas-Rothschild, A., Ben Zeev, B., Barel, O., Moutton, S., Morice-Picard, F., Carmignac, V., Cornaton, J., Marle, N., Devinsky, O., Stimach, C., Wechsler, S. B., Hainline, B. E., Sapp, K., Willems, M., Bruel, A. -L., Dias, K. -R., Evans, C. -A., Roscioli, T., Sachdev, R., Temple, S. E. L., Zhu, Y., Baker, J. J., Scheffer, I. E., Gardiner, F. J., Schneider, A. L., Muir, A. M., Mefford, H. C., Crunk, A., Heise, E. M., Millan, F., Monaghan, K. G., Person, R., Rhodes, L., Richards, S., Wentzensen, I. M., Cogne, B., Isidor, B., Nizon, M., Vincent, M., Besnard, T., Piton, A., Marcelis, C., Kato, K., Koyama, N., Ogi, T., Goh, E. S. -Y., Richmond, C., Amor, D. J., Boyce, J. O., Morgan, A. T., Hildebrand, M. S., Kaspi, A., Bahlo, M., Fridriksdottir, R., Katrinardottir, H., Sulem, P., Stefansson, K., Bjornsson, H. T., Mandelstam, S., Morleo, M., Mariani, M., Scala, M., Accogli, A., Torella, A., Capra, V., Wallis, M., Jansen, S., Weisfisz, Q., de Haan, H., Sadedin, S., Lim, S. C., White, S. M., Ascher, D. B., Schenck, A., Lockhart, P. J., Christodoulou, J., Tan, T. Y., and Human genetics
- Subjects
F-box protein ,Ubiquitin-Protein Ligase ,Proteasome Endopeptidase Complex ,F-Box-WD Repeat-Containing Protein 7 ,Ubiquitin-Protein Ligases ,Neurodevelopment ,global developmental delay ,macrocephaly ,Germ Cell ,Article ,All institutes and research themes of the Radboud University Medical Center ,FBXW7 ,Neurodevelopmental Disorder ,Genetics ,Humans ,hypotonia ,Germ-Line Mutation ,Genetics (clinical) ,Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,brain malformation ,Ubiquitination ,gastrointestinal issue ,Germ Cells ,intellectual disability ,Neurodevelopmental Disorders ,epilepsy ,Human - Abstract
Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.
- Published
- 2022
- Full Text
- View/download PDF
16. Identification of a Rare Branch Point Variant in the SMS Gene in a Large Family With a Severe Form of Snyder-Robinson Syndrome.
- Author
-
Civit A, Ronce N, Cogné B, Besnard T, Laurenceau D, Hubert C, Moizard MP, Gueguen P, Toutain A, and Vuillaume ML
- Abstract
Identification of the first pathogenic branch point variant in the SMS gene in a large French non-consanguineous family with a phenotype retrospectively consistent with Snyder-Robinson syndrome. RT-PCR analysis followed by RNA-sequencing demonstrated that this variant, lead to the synthesis of a predominant aberrant transcript with complete intron 6 retention., (© 2024 The Author(s). Clinical Genetics published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
17. Purplish granules as a cytological signature of cortical developmental disorders caused by pathogenic variants in WDR81.
- Author
-
Le Calvez B, Besnard T, Cogne B, Bézieau S, Béné MC, Beneteau C, and Eveillard M
- Subjects
- Humans, Male, Female, Mutation, Malformations of Cortical Development genetics, Malformations of Cortical Development pathology, Cytoplasmic Granules genetics, Cytoplasmic Granules metabolism
- Published
- 2024
- Full Text
- View/download PDF
18. LARP1 haploinsufficiency is associated with an autosomal dominant neurodevelopmental disorder.
- Author
-
Chettle J, Louie RJ, Larner O, Best R, Chen K, Morris J, Dedeic Z, Childers A, Rogers RC, DuPont BR, Skinner C, Küry S, Uguen K, Planes M, Monteil D, Li M, Eliyahu A, Greenbaum L, Mor N, Besnard T, Isidor B, Cogné B, Blesson A, Comi A, Wentzensen IM, Vuocolo B, Lalani SR, Sierra R, Berry L, Carter K, Sanders SJ, and Blagden SP
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Female, Humans, Male, Autism Spectrum Disorder genetics, Haploinsufficiency genetics, Neurodevelopmental Disorders genetics, Ribonucleoproteins genetics, RNA Recognition Motif Proteins genetics
- Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) that affects approximately 4% of males and 1% of females in the United States. While causes of ASD are multi-factorial, single rare genetic variants contribute to around 20% of cases. Here, we report a case series of seven unrelated probands (6 males, 1 female) with ASD or another variable NDD phenotype attributed to de novo heterozygous loss of function or missense variants in the gene LARP1 (La ribonucleoprotein 1). LARP1 encodes an RNA-binding protein that post-transcriptionally regulates the stability and translation of thousands of mRNAs, including those regulating cellular metabolism and metabolic plasticity. Using lymphocytes collected and immortalized from an index proband who carries a truncating variant in one allele of LARP1, we demonstrated that lower cellular levels of LARP1 protein cause reduced rates of aerobic respiration and glycolysis. As expression of LARP1 increases during neurodevelopment, with higher levels in neurons and astrocytes, we propose that LARP1 haploinsufficiency contributes to ASD or related NDDs through attenuated metabolic activity in the developing fetal brain., Competing Interests: Declaration of interests S.J.S. receives research funding from BioMarin Pharmaceutical. M.L. is an employee and shareholder of Invitae Corp. I.M.W. is an employee of GeneDx, LLC. S.P.B. is a founder and director of RNA Guardian, Ltd.; a patent holder of WO1999062548A9 and WO2016075455A1; has an advisory committee membership to UCB; and has provided consultancy to Simbec Orion, Theolytics, Oxford Drug Discovery, and Ellipses., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
19. Pathogenic variants in KMT2C result in a neurodevelopmental disorder distinct from Kleefstra and Kabuki syndromes.
- Author
-
Rots D, Choufani S, Faundes V, Dingemans AJM, Joss S, Foulds N, Jones EA, Stewart S, Vasudevan P, Dabir T, Park SM, Jewell R, Brown N, Pais L, Jacquemont S, Jizi K, Ravenswaaij-Arts CMAV, Kroes HY, Stumpel CTRM, Ockeloen CW, Diets IJ, Nizon M, Vincent M, Cogné B, Besnard T, Kambouris M, Anderson E, Zackai EH, McDougall C, Donoghue S, O'Donnell-Luria A, Valivullah Z, O'Leary M, Srivastava S, Byers H, Leslie N, Mazzola S, Tiller GE, Vera M, Shen JJ, Boles R, Jain V, Brischoux-Boucher E, Kinning E, Simpson BN, Giltay JC, Harris J, Keren B, Guimier A, Marijon P, Vries BBA, Motter CS, Mendelsohn BA, Coffino S, Gerkes EH, Afenjar A, Visconti P, Bacchelli E, Maestrini E, Delahaye-Duriez A, Gooch C, Hendriks Y, Adams H, Thauvin-Robinet C, Josephi-Taylor S, Bertoli M, Parker MJ, Rutten JW, Caluseriu O, Vernon HJ, Kaziyev J, Zhu J, Kremen J, Frazier Z, Osika H, Breault D, Nair S, Lewis SME, Ceroni F, Viggiano M, Posar A, Brittain H, Giovanna T, Giulia G, Quteineh L, Ha-Vinh Leuchter R, Zonneveld-Huijssoon E, Mellado C, Marey I, Coudert A, Aracena Alvarez MI, Kennis MGP, Bouman A, Roifman M, Amorós Rodríguez MI, Ortigoza-Escobar JD, Vernimmen V, Sinnema M, Pfundt R, Brunner HG, Vissers LELM, Kleefstra T, Weksberg R, and Banka S
- Subjects
- Humans, Male, Female, Child, Child, Preschool, Neoplasm Proteins genetics, Adolescent, Hypertrichosis genetics, Mutation, Failure to Thrive genetics, Histone-Lysine N-Methyltransferase genetics, Heart Defects, Congenital, Abnormalities, Multiple genetics, Vestibular Diseases genetics, Intellectual Disability genetics, Face abnormalities, Face pathology, DNA-Binding Proteins genetics, Hematologic Diseases genetics, Neurodevelopmental Disorders genetics, Craniofacial Abnormalities genetics, Chromosome Deletion, Chromosomes, Human, Pair 9 genetics, DNA Methylation genetics
- Abstract
Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition., Competing Interests: Declaration of interests R.W. is a consultant (equity) for Alamya Health., (Copyright © 2024 American Society of Human Genetics. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
20. PSMD11 loss-of-function variants correlate with a neurobehavioral phenotype, obesity, and increased interferon response.
- Author
-
Deb W, Rosenfelt C, Vignard V, Papendorf JJ, Möller S, Wendlandt M, Studencka-Turski M, Cogné B, Besnard T, Ruffier L, Toutain B, Poirier L, Cuinat S, Kritzer A, Crunk A, diMonda J, Vengoechea J, Mercier S, Kleinendorst L, van Haelst MM, Zuurbier L, Sulem T, Katrínardóttir H, Friðriksdóttir R, Sulem P, Stefansson K, Jonsdottir B, Zeidler S, Sinnema M, Stegmann APA, Naveh N, Skraban CM, Gray C, Murrell JR, Isikay S, Pehlivan D, Calame DG, Posey JE, Nizon M, McWalter K, Lupski JR, Isidor B, Bolduc FV, Bézieau S, Krüger E, Küry S, and Ebstein F
- Subjects
- Adolescent, Animals, Child, Child, Preschool, Female, Humans, Male, Interferons metabolism, Interferons genetics, Loss of Function Mutation, Phenotype, Drosophila melanogaster genetics, Intellectual Disability genetics, Neurodevelopmental Disorders genetics, Obesity genetics, Proteasome Endopeptidase Complex genetics, Proteasome Endopeptidase Complex metabolism
- Abstract
Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health., Competing Interests: Declaration of interests A.C. and K.M. are employees of GeneDx, LLC. J.R.L. has stock in 23andMe and is a paid consultant for Genome International., (Copyright © 2024 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
21. Gain-of-function and loss-of-function variants in GRIA3 lead to distinct neurodevelopmental phenotypes.
- Author
-
Rinaldi B, Bayat A, Zachariassen LG, Sun JH, Ge YH, Zhao D, Bonde K, Madsen LH, Awad IAA, Bagiran D, Sbeih A, Shah SM, El-Sayed S, Lyngby SM, Pedersen MG, Stenum-Berg C, Walker LC, Krey I, Delahaye-Duriez A, Emrick LT, Sully K, Murali CN, Burrage LC, Plaud Gonzalez JA, Parnes M, Friedman J, Isidor B, Lefranc J, Redon S, Heron D, Mignot C, Keren B, Fradin M, Dubourg C, Mercier S, Besnard T, Cogne B, Deb W, Rivier C, Milani D, Bedeschi MF, Di Napoli C, Grilli F, Marchisio P, Koudijs S, Veenma D, Argilli E, Lynch SA, Au PYB, Ayala Valenzuela FE, Brown C, Masser-Frye D, Jones M, Patron Romero L, Li WL, Thorpe E, Hecher L, Johannsen J, Denecke J, McNiven V, Szuto A, Wakeling E, Cruz V, Sency V, Wang H, Piard J, Kortüm F, Herget T, Bierhals T, Condell A, Ben-Zeev B, Kaur S, Christodoulou J, Piton A, Zweier C, Kraus C, Micalizzi A, Trivisano M, Specchio N, Lesca G, Møller RS, Tümer Z, Musgaard M, Gerard B, Lemke JR, Shi YS, and Kristensen AS
- Subjects
- Humans, Male, Female, Child, Child, Preschool, Adolescent, Infant, Adult, Young Adult, Neurodevelopmental Disorders genetics, Receptors, AMPA genetics, Phenotype, Loss of Function Mutation genetics, Gain of Function Mutation genetics
- Abstract
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally. Here, we evaluated the impact on AMPAR function of one frameshift and 43 rare missense GRIA3 variants identified in patients with NDD by electrophysiological assays. Thirty-one variants alter receptor function and show loss-of-function or gain-of-function properties, whereas 13 appeared neutral. We collected detailed clinical data from 25 patients (from 23 families) harbouring 17 of these variants. All patients had global developmental impairment, mostly moderate (9/25) or severe (12/25). Twelve patients had seizures, including focal motor (6/12), unknown onset motor (4/12), focal impaired awareness (1/12), (atypical) absence (2/12), myoclonic (5/12) and generalized tonic-clonic (1/12) or atonic (1/12) seizures. The epilepsy syndrome was classified as developmental and epileptic encephalopathy in eight patients, developmental encephalopathy without seizures in 13 patients, and intellectual disability with epilepsy in four patients. Limb muscular hypotonia was reported in 13/25, and hypertonia in 10/25. Movement disorders were reported in 14/25, with hyperekplexia or non-epileptic erratic myoclonus being the most prevalent feature (8/25). Correlating receptor functional phenotype with clinical features revealed clinical features for GRIA3-associated NDDs and distinct NDD phenotypes for loss-of-function and gain-of-function variants. Gain-of-function variants were associated with more severe outcomes: patients were younger at the time of seizure onset (median age: 1 month), hypertonic and more often had movement disorders, including hyperekplexia. Patients with loss-of-function variants were older at the time of seizure onset (median age: 16 months), hypotonic and had sleeping disturbances. Loss-of-function and gain-of-function variants were disease-causing in both sexes but affected males often carried de novo or hemizygous loss-of-function variants inherited from healthy mothers, whereas affected females had mostly de novo heterozygous gain-of-function variants., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
22. Unveiling the crucial neuronal role of the proteasomal ATPase subunit gene PSMC5 in neurodevelopmental proteasomopathies.
- Author
-
Küry S, Stanton JE, van Woerden G, Hsieh TC, Rosenfelt C, Scott-Boyer MP, Most V, Wang T, Papendorf JJ, de Konink C, Deb W, Vignard V, Studencka-Turski M, Besnard T, Hajdukowicz AM, Thiel F, Möller S, Florenceau L, Cuinat S, Marsac S, Wentzensen I, Tuttle A, Forster C, Striesow J, Golnik R, Ortiz D, Jenkins L, Rosenfeld JA, Ziegler A, Houdayer C, Bonneau D, Torti E, Begtrup A, Monaghan KG, Mullegama SV, Volker-Touw CMLN, van Gassen KLI, Oegema R, de Pagter M, Steindl K, Rauch A, Ivanovski I, McDonald K, Boothe E, Dauber A, Baker J, Fabie NAV, Bernier RA, Turner TN, Srivastava S, Dies KA, Swanson L, Costin C, Jobling RK, Pappas J, Rabin R, Niyazov D, Tsai AC, Kovak K, Beck DB, Malicdan M, Adams DR, Wolfe L, Ganetzky RD, Muraresku C, Babikyan D, Sedláček Z, Hančárová M, Timberlake AT, Al Saif H, Nestler B, King K, Hajianpour MJ, Costain G, Prendergast D, Li C, Geneviève D, Vitobello A, Sorlin A, Philippe C, Harel T, Toker O, Sabir A, Lim D, Hamilton M, Bryson L, Cleary E, Weber S, Hoffman TL, Cueto-González AM, Tizzano EF, Gómez-Andrés D, Codina-Solà M, Ververi A, Pavlidou E, Lambropoulos A, Garganis K, Rio M, Levy J, Jurgensmeyer S, McRae AM, Lessard MK, D'Agostino MD, De Bie I, Wegler M, Jamra RA, Kamphausen SB, Bothe V, Busch LM, Völker U, Hammer E, Wende K, Cogné B, Isidor B, Meiler J, Bosc-Rosati A, Marcoux J, Bousquet MP, Poschmann J, Laumonnier F, Hildebrand PW, Eichler EE, McWalter K, Krawitz PM, Droit A, Elgersma Y, Grabrucker AM, Bolduc FV, Bézieau S, Ebstein F, and Krüger E
- Abstract
Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.
- Published
- 2024
- Full Text
- View/download PDF
23. PSMC3 proteasome subunit variants are associated with neurodevelopmental delay and type I interferon production.
- Author
-
Ebstein F, Küry S, Most V, Rosenfelt C, Scott-Boyer MP, van Woerden GM, Besnard T, Papendorf JJ, Studencka-Turski M, Wang T, Hsieh TC, Golnik R, Baldridge D, Forster C, de Konink C, Teurlings SMW, Vignard V, van Jaarsveld RH, Ades L, Cogné B, Mignot C, Deb W, Jongmans MCJ, Cole FS, van den Boogaard MH, Wambach JA, Wegner DJ, Yang S, Hannig V, Brault JA, Zadeh N, Bennetts B, Keren B, Gélineau AC, Powis Z, Towne M, Bachman K, Seeley A, Beck AE, Morrison J, Westman R, Averill K, Brunet T, Haasters J, Carter MT, Osmond M, Wheeler PG, Forzano F, Mohammed S, Trakadis Y, Accogli A, Harrison R, Guo Y, Hakonarson H, Rondeau S, Baujat G, Barcia G, Feichtinger RG, Mayr JA, Preisel M, Laumonnier F, Kallinich T, Knaus A, Isidor B, Krawitz P, Völker U, Hammer E, Droit A, Eichler EE, Elgersma Y, Hildebrand PW, Bolduc F, Krüger E, and Bézieau S
- Subjects
- Animals, Humans, Mice, Adenosine Triphosphatases genetics, Drosophila melanogaster, Gene Expression, Proteomics, Interferon Type I, Proteasome Endopeptidase Complex metabolism
- Abstract
A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26 S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.
- Published
- 2023
- Full Text
- View/download PDF
24. Stepwise use of genomics and transcriptomics technologies increases diagnostic yield in Mendelian disorders.
- Author
-
Colin E, Duffourd Y, Chevarin M, Tisserant E, Verdez S, Paccaud J, Bruel AL, Tran Mau-Them F, Denommé-Pichon AS, Thevenon J, Safraou H, Besnard T, Goldenberg A, Cogné B, Isidor B, Delanne J, Sorlin A, Moutton S, Fradin M, Dubourg C, Gorce M, Bonneau D, El Chehadeh S, Debray FG, Doco-Fenzy M, Uguen K, Chatron N, Aral B, Marle N, Kuentz P, Boland A, Olaso R, Deleuze JF, Sanlaville D, Callier P, Philippe C, Thauvin-Robinet C, Faivre L, and Vitobello A
- Abstract
Purpose: Multi-omics offer worthwhile and increasingly accessible technologies to diagnostic laboratories seeking potential second-tier strategies to help patients with unresolved rare diseases, especially patients clinically diagnosed with a rare OMIM (Online Mendelian Inheritance in Man) disease. However, no consensus exists regarding the optimal diagnostic care pathway to adopt after negative results with standard approaches. Methods: In 15 unsolved individuals clinically diagnosed with recognizable OMIM diseases but with negative or inconclusive first-line genetic results, we explored the utility of a multi-step approach using several novel omics technologies to establish a molecular diagnosis. Inclusion criteria included a clinical autosomal recessive disease diagnosis and single heterozygous pathogenic variant in the gene of interest identified by first-line analysis (60%-9/15) or a clinical diagnosis of an X-linked recessive or autosomal dominant disease with no causative variant identified (40%-6/15). We performed a multi-step analysis involving short-read genome sequencing (srGS) and complementary approaches such as mRNA sequencing (mRNA-seq), long-read genome sequencing (lrG), or optical genome mapping (oGM) selected according to the outcome of the GS analysis. Results: SrGS alone or in combination with additional genomic and/or transcriptomic technologies allowed us to resolve 87% of individuals by identifying single nucleotide variants/indels missed by first-line targeted tests, identifying variants affecting transcription, or structural variants sometimes requiring lrGS or oGM for their characterization. Conclusion: Hypothesis-driven implementation of combined omics technologies is particularly effective in identifying molecular etiologies. In this study, we detail our experience of the implementation of genomics and transcriptomics technologies in a pilot cohort of previously investigated patients with a typical clinical diagnosis without molecular etiology., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Colin, Duffourd, Chevarin, Tisserant, Verdez, Paccaud, Bruel, Tran Mau-Them, Denommé-Pichon, Thevenon, Safraou, Besnard, Goldenberg, Cogné, Isidor, Delanne, Sorlin, Moutton, Fradin, Dubourg, Gorce, Bonneau, El Chehadeh, Debray, Doco-Fenzy, Uguen, Chatron, Aral, Marle, Kuentz, Boland, Olaso, Deleuze, Sanlaville, Callier, Philippe, Thauvin-Robinet, Faivre and Vitobello.)
- Published
- 2023
- Full Text
- View/download PDF
25. SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation.
- Author
-
de Sainte Agathe JM, Filser M, Isidor B, Besnard T, Gueguen P, Perrin A, Van Goethem C, Verebi C, Masingue M, Rendu J, Cossée M, Bergougnoux A, Frobert L, Buratti J, Lejeune É, Le Guern É, Pasquier F, Clot F, Kalatzis V, Roux AF, Cogné B, and Baux D
- Subjects
- Humans, RNA Splicing genetics, Algorithms
- Abstract
SpliceAI is an open-source deep learning splicing prediction algorithm that has demonstrated in the past few years its high ability to predict splicing defects caused by DNA variations. However, its outputs present several drawbacks: (1) although the numerical values are very convenient for batch filtering, their precise interpretation can be difficult, (2) the outputs are delta scores which can sometimes mask a severe consequence, and (3) complex delins are most often not handled. We present here SpliceAI-visual, a free online tool based on the SpliceAI algorithm, and show how it complements the traditional SpliceAI analysis. First, SpliceAI-visual manipulates raw scores and not delta scores, as the latter can be misleading in certain circumstances. Second, the outcome of SpliceAI-visual is user-friendly thanks to the graphical presentation. Third, SpliceAI-visual is currently one of the only SpliceAI-derived implementations able to annotate complex variants (e.g., complex delins). We report here the benefits of using SpliceAI-visual and demonstrate its relevance in the assessment/modulation of the PVS1 classification criteria. We also show how SpliceAI-visual can elucidate several complex splicing defects taken from the literature but also from unpublished cases. SpliceAI-visual is available as a Google Colab notebook and has also been fully integrated in a free online variant interpretation tool, MobiDetails ( https://mobidetails.iurc.montp.inserm.fr/MD )., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
26. Exome sequencing as a first-tier test for copy number variant detection: retrospective evaluation and prospective screening in 2418 cases.
- Author
-
Testard Q, Vanhoye X, Yauy K, Naud ME, Vieville G, Rousseau F, Dauriat B, Marquet V, Bourthoumieu S, Geneviève D, Gatinois V, Wells C, Willems M, Coubes C, Pinson L, Dard R, Tessier A, Hervé B, Vialard F, Harzallah I, Touraine R, Cogné B, Deb W, Besnard T, Pichon O, Laudier B, Mesnard L, Doreille A, Busa T, Missirian C, Satre V, Coutton C, Celse T, Harbuz R, Raymond L, Taly JF, and Thevenon J
- Subjects
- Humans, Retrospective Studies, High-Throughput Nucleotide Sequencing methods, Prospective Studies, DNA Copy Number Variations genetics, Exome genetics
- Abstract
Background: Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%-20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES., Methods: This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed., Results: On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure., Conclusion: Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered., Competing Interests: Competing interests: QT, XV, LR and J-FT are employed by Eurofins Biomnis, a private medical biology laboratory. KY is employed by Seqone Genomics a private bioinformatics software provider., (© Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2022
- Full Text
- View/download PDF
27. A Gardos channelopathy associated with nonimmune hydrops and fetal loss.
- Author
-
Ghesh L, Besnard T, Joubert M, Picard V, Le Vaillant C, and Beneteau C
- Subjects
- Pregnancy, Female, Humans, Hydrops Fetalis genetics, Ion Channels genetics, Edema complications, Anemia, Hemolytic, Congenital complications, Anemia, Hemolytic, Congenital genetics, Channelopathies complications
- Abstract
Dehydrated hereditary stomatocytosis (DHS) (MIM#194380) is a rare autosomal dominant disorder of red blood cell permeability, characterized by a partially or fully compensated nonimmune hemolytic anemia. PIEZO1 is the major gene involved with hundreds of families described, some of which present transient perinatal edema of varying severity. A smaller subset of individuals harbors pathogenic variants in KCNN4, sometimes referred as "Gardos channelopathy." Up to now, only six pathogenic variants in KCNN4 have been reported in 13 unrelated families. Unlike PIEZO1-DHS, neither perinatal edema nor fetal loss has ever been observed linked to KCNN4-DHS. We report the first fetal loss due to non-immune hydrops fetalis related to a pathogenic 28 bp deletion (NM_002250.2: c.1109_1119+17del) in KCNN4. This observation underlies the need for very close monitoring of pregnancies when one parent is affected by DHS regardless of genotype (PIEZO1 or KCNN4)., (© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
28. FOSL2 truncating variants in the last exon cause a neurodevelopmental disorder with scalp and enamel defects.
- Author
-
Cospain A, Rivera-Barahona A, Dumontet E, Gener B, Bailleul-Forestier I, Meyts I, Jouret G, Isidor B, Brewer C, Wuyts W, Moens L, Delafontaine S, Keung Lam WW, Van Den Bogaert K, Boogaerts A, Scalais E, Besnard T, Cogne B, Guissard C, Rollier P, Carre W, Bouvet R, Tarte K, Gómez-Carmona R, Lapunzina P, Odent S, Faoucher M, Dubourg C, Ruiz-Pérez VL, Devriendt K, Pasquier L, and Pérez-Jurado LA
- Subjects
- Humans, Scalp abnormalities, Scalp metabolism, HEK293 Cells, Transcription Factor AP-1 genetics, Exons genetics, RNA, Messenger, Fos-Related Antigen-2 genetics, Autism Spectrum Disorder genetics, Ectodermal Dysplasia genetics, Neurodevelopmental Disorders genetics
- Abstract
Purpose: We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex., Methods: Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability., Results: We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed., Conclusion: Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology., Competing Interests: Conflict of Interest L.A.P.-J. is founding partner and scientific advisor of qGenomics Laboratories. All other authors declare no conflicts of interest., (Copyright © 2022 American College of Medical Genetics and Genomics. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
29. Bi-allelic loss-of-function variants in TMEM147 cause moderate to profound intellectual disability with facial dysmorphism and pseudo-Pelger-Huët anomaly.
- Author
-
Thomas Q, Motta M, Gautier T, Zaki MS, Ciolfi A, Paccaud J, Girodon F, Boespflug-Tanguy O, Besnard T, Kerkhof J, McConkey H, Masson A, Denommé-Pichon AS, Cogné B, Trochu E, Vignard V, El It F, Rodan LH, Alkhateeb MA, Jamra RA, Duplomb L, Tisserant E, Duffourd Y, Bruel AL, Jackson A, Banka S, McEntagart M, Saggar A, Gleeson JG, Sievert D, Bae H, Lee BH, Kwon K, Seo GH, Lee H, Saeed A, Anjum N, Cheema H, Alawbathani S, Khan I, Pinto-Basto J, Teoh J, Wong J, Sahari UBM, Houlden H, Zhelcheska K, Pannetier M, Awad MA, Lesieur-Sebellin M, Barcia G, Amiel J, Delanne J, Philippe C, Faivre L, Odent S, Bertoli-Avella A, Thauvin C, Sadikovic B, Reversade B, Maroofian R, Govin J, Tartaglia M, and Vitobello A
- Subjects
- Cell Nucleus genetics, Child, Chromatin, Humans, Loss of Heterozygosity, Intellectual Disability genetics, Musculoskeletal Abnormalities, Pelger-Huet Anomaly genetics
- Abstract
The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction., Competing Interests: Declaration of interests S.A., I.K., J.P.B., and A.B.-A. are employees of Centogene GmbH., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
30. Rare pathogenic variants in WNK3 cause X-linked intellectual disability.
- Author
-
Küry S, Zhang J, Besnard T, Caro-Llopis A, Zeng X, Robert SM, Josiah SS, Kiziltug E, Denommé-Pichon AS, Cogné B, Kundishora AJ, Hao LT, Li H, Stevenson RE, Louie RJ, Deb W, Torti E, Vignard V, McWalter K, Raymond FL, Rajabi F, Ranza E, Grozeva D, Coury SA, Blanc X, Brischoux-Boucher E, Keren B, Õunap K, Reinson K, Ilves P, Wentzensen IM, Barr EE, Guihard SH, Charles P, Seaby EG, Monaghan KG, Rio M, van Bever Y, van Slegtenhorst M, Chung WK, Wilson A, Quinquis D, Bréhéret F, Retterer K, Lindenbaum P, Scalais E, Rhodes L, Stouffs K, Pereira EM, Berger SM, Milla SS, Jaykumar AB, Cobb MH, Panchagnula S, Duy PQ, Vincent M, Mercier S, Gilbert-Dussardier B, Le Guillou X, Audebert-Bellanger S, Odent S, Schmitt S, Boisseau P, Bonneau D, Toutain A, Colin E, Pasquier L, Redon R, Bouman A, Rosenfeld JA, Friez MJ, Pérez-Peña H, Akhtar Rizvi SR, Haider S, Antonarakis SE, Schwartz CE, Martínez F, Bézieau S, Kahle KT, and Isidor B
- Subjects
- Brain abnormalities, Catalytic Domain genetics, Hemizygote, Humans, Loss of Function Mutation, Male, Maternal Inheritance genetics, Mutation, Missense, Phosphorylation, Mental Retardation, X-Linked genetics, Protein Serine-Threonine Kinases chemistry, Protein Serine-Threonine Kinases genetics, Symporters metabolism
- Abstract
Purpose: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown., Method: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID)., Results: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition., Conclusion: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism., Competing Interests: Conflict of Interest E.T., K.M., K.R., I.M.W., K.G.M., and L.R. are employees of GeneDx, LLC. K.R. is a shareholder of OPKO Health, Inc. The Department of Molecular and Human Genetics at Baylor College of Medicine receives revenue from clinical genetic testing conducted at Baylor Genetics Laboratories. All other authors declare no conflicts of interest., (Copyright © 2022 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
31. Loss-of-function variants in SRRM2 cause a neurodevelopmental disorder.
- Author
-
Cuinat S, Nizon M, Isidor B, Stegmann A, van Jaarsveld RH, van Gassen KL, van der Smagt JJ, Volker-Touw CML, Holwerda SJB, Terhal PA, Schuhmann S, Vasileiou G, Khalifa M, Nugud AA, Yasaei H, Ousager LB, Brasch-Andersen C, Deb W, Besnard T, Simon MEH, Amsterdam KH, Verbeek NE, Matalon D, Dykzeul N, White S, Spiteri E, Devriendt K, Boogaerts A, Willemsen M, Brunner HG, Sinnema M, De Vries BBA, Gerkes EH, Pfundt R, Izumi K, Krantz ID, Xu ZL, Murrell JR, Valenzuela I, Cusco I, Rovira-Moreno E, Yang Y, Bizaoui V, Patat O, Faivre L, Tran-Mau-Them F, Vitobello A, Denommé-Pichon AS, Philippe C, Bezieau S, and Cogné B
- Subjects
- Child, Developmental Disabilities genetics, Humans, Muscle Hypotonia genetics, Phenotype, Intellectual Disability genetics, Neurodevelopmental Disorders genetics, RNA-Binding Proteins genetics
- Abstract
Purpose: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease., Methods: Among the 1000 probands studied with developmental delay and intellectual disability in our database, we found 2 patients with de novo LoF variants in SRRM2. Additional families were identified through GeneMatcher., Results: Here, we report on 22 patients with LoF variants in SRRM2 and provide a description of the phenotype. Molecular analysis identified 12 frameshift variants, 8 nonsense variants, and 2 microdeletions of 66 kb and 270 kb. The patients presented with a mild developmental delay, predominant speech delay, autistic or attention-deficit/hyperactivity disorder features, overfriendliness, generalized hypotonia, overweight, and dysmorphic facial features. Intellectual disability was variable and mild when present., Conclusion: We established SRRM2 as a gene responsible for a rare neurodevelopmental disease., Competing Interests: Conflict of Interest This work was carried out within the framework of Nantes University Medical Center activity without additional funding. One patient was diagnosed in the context of work in a private company (AiLife Diagnostics, Pearland, Texas). The other authors declare no conflicts of interest., (Copyright © 2022 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
32. Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome.
- Author
-
Stephenson SEM, Costain G, Blok LER, Silk MA, Nguyen TB, Dong X, Alhuzaimi DE, Dowling JJ, Walker S, Amburgey K, Hayeems RZ, Rodan LH, Schwartz MA, Picker J, Lynch SA, Gupta A, Rasmussen KJ, Schimmenti LA, Klee EW, Niu Z, Agre KE, Chilton I, Chung WK, Revah-Politi A, Au PYB, Griffith C, Racobaldo M, Raas-Rothschild A, Ben Zeev B, Barel O, Moutton S, Morice-Picard F, Carmignac V, Cornaton J, Marle N, Devinsky O, Stimach C, Wechsler SB, Hainline BE, Sapp K, Willems M, Bruel AL, Dias KR, Evans CA, Roscioli T, Sachdev R, Temple SEL, Zhu Y, Baker JJ, Scheffer IE, Gardiner FJ, Schneider AL, Muir AM, Mefford HC, Crunk A, Heise EM, Millan F, Monaghan KG, Person R, Rhodes L, Richards S, Wentzensen IM, Cogné B, Isidor B, Nizon M, Vincent M, Besnard T, Piton A, Marcelis C, Kato K, Koyama N, Ogi T, Goh ES, Richmond C, Amor DJ, Boyce JO, Morgan AT, Hildebrand MS, Kaspi A, Bahlo M, Friðriksdóttir R, Katrínardóttir H, Sulem P, Stefánsson K, Björnsson HT, Mandelstam S, Morleo M, Mariani M, Scala M, Accogli A, Torella A, Capra V, Wallis M, Jansen S, Weisfisz Q, de Haan H, Sadedin S, Lim SC, White SM, Ascher DB, Schenck A, Lockhart PJ, Christodoulou J, and Tan TY
- Subjects
- Germ Cells, Germ-Line Mutation, Humans, Proteasome Endopeptidase Complex metabolism, Ubiquitin-Protein Ligases genetics, Ubiquitin-Protein Ligases metabolism, F-Box-WD Repeat-Containing Protein 7 chemistry, F-Box-WD Repeat-Containing Protein 7 genetics, F-Box-WD Repeat-Containing Protein 7 metabolism, Neurodevelopmental Disorders genetics, Ubiquitination
- Abstract
Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7., Competing Interests: Declaration of interests I.E.S. has served on scientific advisory boards for UCB, Eisai, GlaxoSmithKline, BioMarin, Nutricia, Rogcon, Chiesi, Encoded Therapeutics, Xenon Pharmaceuticals, and Knopp Biosciences; has received speaker honoraria from GlaxoSmithKline, UCB, BioMarin, Biocodex, and Eisai; has received funding for travel from UCB, Biocodex, GlaxoSmithKline, Biomarin and Eisai; has served as an investigator for Zogenix, Zynerba, Ultragenyx, GW Pharma, UCB, Eisai, Anavex Life Sciences, Ovid Therapeutics, Epygenyx, Encoded Therapeutics and Marinus; and has consulted for Zynerba Pharmaceuticals, Atheneum Partners, Ovid Therapeutics, Care Beyond Diagnosis, Epilepsy Consortium and UCB. She may accrue future revenue on pending patent WO2009/086591; her patent for SCN1A testing is held by Bionomics and is licensed to various diagnostic companies; and she has a patent for a molecular diagnostic/therapeutic target for benign familial infantile epilepsy (BFIE) (PRRT2), WO/2013/059884. She receives and/or has received research support from the National Health and Medical Research Council of Australia, Medical Research Future Fund, Health Research Council of New Zealand, CURE, Australian Epilepsy Research Fund, and the National Institute of Neurological Disorders and Stroke of the National Institutes of Health. J.P. is co-chief scientific officer for Global Gene Corp. All other authors declare no competing interests., (Copyright © 2022 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
33. THUMPD1 bi-allelic variants cause loss of tRNA acetylation and a syndromic neurodevelopmental disorder.
- Author
-
Broly M, Polevoda BV, Awayda KM, Tong N, Lentini J, Besnard T, Deb W, O'Rourke D, Baptista J, Ellard S, Almannai M, Hashem M, Abdulwahab F, Shamseldin H, Al-Tala S, Alkuraya FS, Leon A, van Loon RLE, Ferlini A, Sanchini M, Bigoni S, Ciorba A, van Bokhoven H, Iqbal Z, Al-Maawali A, Al-Murshedi F, Ganesh A, Al-Mamari W, Lim SC, Pais LS, Brown N, Riazuddin S, Bézieau S, Fu D, Isidor B, Cogné B, and O'Connell MR
- Subjects
- Acetylation, Alleles, Humans, Mutation genetics, RNA metabolism, RNA, Transfer genetics, RNA, Transfer metabolism, Intellectual Disability genetics, Intellectual Disability metabolism, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders metabolism, RNA-Binding Proteins genetics, RNA-Binding Proteins metabolism
- Abstract
Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
34. Rare germline heterozygous missense variants in BRCA1-associated protein 1, BAP1, cause a syndromic neurodevelopmental disorder.
- Author
-
Küry S, Ebstein F, Mollé A, Besnard T, Lee MK, Vignard V, Hery T, Nizon M, Mancini GMS, Giltay JC, Cogné B, McWalter K, Deb W, Mor-Shaked H, Li H, Schnur RE, Wentzensen IM, Denommé-Pichon AS, Fourgeux C, Verheijen FW, Faurie E, Schot R, Stevens CA, Smits DJ, Barr E, Sheffer R, Bernstein JA, Stimach CL, Kovitch E, Shashi V, Schoch K, Smith W, van Jaarsveld RH, Hurst ACE, Smith K, Baugh EH, Bohm SG, Vyhnálková E, Ryba L, Delnatte C, Neira J, Bonneau D, Toutain A, Rosenfeld JA, Audebert-Bellanger S, Gilbert-Dussardier B, Odent S, Laumonnier F, Berger SI, Smith ACM, Bourdeaut F, Stern MH, Redon R, Krüger E, Margueron R, Bézieau S, Poschmann J, and Isidor B
- Subjects
- Adolescent, BRCA1 Protein immunology, Child, Child, Preschool, Chromatin chemistry, Chromatin immunology, Chromatin Assembly and Disassembly genetics, Chromatin Assembly and Disassembly immunology, Family, Female, Gene Expression Regulation, Heterozygote, Histones genetics, Histones immunology, Host Cell Factor C1 genetics, Host Cell Factor C1 immunology, Humans, Infant, Male, Neurodevelopmental Disorders immunology, Neurodevelopmental Disorders pathology, Proteasome Endopeptidase Complex genetics, Proteasome Endopeptidase Complex immunology, T-Lymphocytes immunology, T-Lymphocytes pathology, Tumor Suppressor Proteins deficiency, Tumor Suppressor Proteins immunology, Ubiquitin genetics, Ubiquitin immunology, Ubiquitin Thiolesterase deficiency, Ubiquitin Thiolesterase immunology, Ubiquitin-Protein Ligases genetics, Ubiquitin-Protein Ligases immunology, Ubiquitination, BRCA1 Protein genetics, Germ-Line Mutation, Loss of Function Mutation, Mutation, Missense, Neurodevelopmental Disorders genetics, Tumor Suppressor Proteins genetics, Ubiquitin Thiolesterase genetics
- Abstract
Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes., Competing Interests: Declaration of interests The Department of Molecular and Human Genetics at Baylor College of Medicine receives revenue from clinical genetic testing completed at Baylor Genetics Laboratory. K.Mc., R.E.S., and I.M.W. are employees of GeneDx, Inc., (Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
35. Stankiewicz-Isidor syndrome: expanding the clinical and molecular phenotype.
- Author
-
Isidor B, Ebstein F, Hurst A, Vincent M, Bader I, Rudy NL, Cogne B, Mayr J, Brehm A, Bupp C, Warren K, Bacino CA, Gerard A, Ranells JD, Metcalfe KA, van Bever Y, Jiang YH, Mendelssohn BA, Cope H, Rosenfeld JA, Blackburn PR, Goodenberger ML, Kearney HM, Kennedy J, Scurr I, Szczaluba K, Ploski R, de Saint Martin A, Alembik Y, Piton A, Bruel AL, Thauvin-Robinet C, Strong A, Diderich KEM, Bourgeois D, Dahan K, Vignard V, Bonneau D, Colin E, Barth M, Camby C, Baujat G, Briceño I, Gómez A, Deb W, Conrad S, Besnard T, Bézieau S, Krüger E, Küry S, and Stankiewicz P
- Subjects
- Haploinsufficiency, Humans, Phenotype, Intellectual Disability diagnosis, Language Development Disorders genetics, Musculoskeletal Abnormalities genetics
- Abstract
Purpose: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS., Methods: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status., Results: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes., Conclusion: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature., Competing Interests: Conflict of Interest The Department of Molecular and Human Genetics at Baylor College of Medicine receives revenue from clinical genetic testing conducted at Baylor Genetics. The other authors declare no conflicts of interest., (Copyright © 2021 American College of Medical Genetics and Genomics. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
36. Risk Factors of Midterm Mortality After Aortic Valve Replacement for Severe Calcified Tricuspid Aortic Valve Stenosis: A retrospective analysis of Perioperative Events Assessment in Adult Cardiac surgery (PESSAC) Registry.
- Author
-
Beurton A, Ferté T, Mion S, Besnard T, Jecker O, Remy A, Labrousse L, and Ouattara A
- Subjects
- Adult, Aortic Valve diagnostic imaging, Aortic Valve surgery, Humans, Male, Registries, Retrospective Studies, Risk Assessment, Risk Factors, Treatment Outcome, Aortic Valve Stenosis diagnostic imaging, Aortic Valve Stenosis surgery, Cardiac Surgical Procedures adverse effects, Heart Valve Prosthesis Implantation
- Abstract
Objective: The European System for Cardiac Operative Risk Evaluation II (EuroSCORE II) initially developed for predicting early postoperative mortality of all types of cardiac surgery, is less able to predict, more specifically, long-term outcomes after aortic valve replacement (AVR). The study authors here evaluated the risk factors for three-year mortality after isolated aortic valve replacement (AVR) for severe calcified tricuspid aortic valve stenosis and compared them with EuroSCORE II to predict long-term outcomes., Design: A retrospective study., Setting: A university teaching hospital., Participants: This study included 1,101 adults who underwent isolated AVR for severe calcified tricuspid aortic valve stenosis between September 2010 to June 2015., Interventions: None., Measurements and Main Results: The primary endpoint was that of three-year all-cause mortality after AVR. By three years, 168 patients (15.3%) had died. Risk factors for all-cause mortality were: male gender (odds ratio [OR] = 1.78; 95% confidence interval [CI] = 1.21-2.62; p < 0.01), peripheral arterial disease (OR = 1.77; 95% CI = 1.08-2.92; p = 0.03), age (OR = 1.06 per year increase; 95% CI =1.04-1.09; p < 0.01), pulmonary artery systolic pressure (OR = 1.02 per mmHg increase; 95% CI = 1.01-1.03; p < 0.01), platelet count (OR = 1.003 per G/L increase; 95% CI = 1.000-1.005; p = 0.04), and valve area (OR = 0.97 per cm²/m² increase; 95% CI= 0.95-0.99; p < 0.01). The area under the receiver operating characteristic curves were 0.67 (95% CI = 0.60-0.75) and 0.60 (95% CI = 0.56-0.65) for the authors' logistic regression model and EuroSCORE II, respectively (p = 0.11)., Conclusions: The study authors identified six independent risk factors for three-year mortality after isolated AVR. The logistic regression model had relatively modest predictive performance for three-year mortality., Competing Interests: Conflict of Interest None., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
37. Haploinsufficiency of ARFGEF1 is associated with developmental delay, intellectual disability, and epilepsy with variable expressivity.
- Author
-
Thomas Q, Gautier T, Marafi D, Besnard T, Willems M, Moutton S, Isidor B, Cogné B, Conrad S, Tenconi R, Iascone M, Sorlin A, Masurel A, Dabir T, Jackson A, Banka S, Delanne J, Lupski JR, Saadi NW, Alkuraya FS, Zahrani FA, Agrawal PB, England E, Madden JA, Posey JE, Burglen L, Rodriguez D, Chevarin M, Nguyen S, Mau-Them FT, Duffourd Y, Garret P, Bruel AL, Callier P, Marle N, Denomme-Pichon AS, Duplomb L, Philippe C, Thauvin-Robinet C, Govin J, Faivre L, and Vitobello A
- Subjects
- Heterozygote, Humans, Epilepsy genetics, Guanine Nucleotide Exchange Factors genetics, Haploinsufficiency, Intellectual Disability genetics
- Abstract
Purpose: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized., Methods: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing., Results: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity., Conclusion: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy., (© 2021. The Author(s), under exclusive licence to the American College of Medical Genetics and Genomics.)
- Published
- 2021
- Full Text
- View/download PDF
38. Haploinsufficiency of the Sin3/HDAC corepressor complex member SIN3B causes a syndromic intellectual disability/autism spectrum disorder.
- Author
-
Latypova X, Vincent M, Mollé A, Adebambo OA, Fourgeux C, Khan TN, Caro A, Rosello M, Orellana C, Niyazov D, Lederer D, Deprez M, Capri Y, Kannu P, Tabet AC, Levy J, Aten E, den Hollander N, Splitt M, Walia J, Immken LL, Stankiewicz P, McWalter K, Suchy S, Louie RJ, Bell S, Stevenson RE, Rousseau J, Willem C, Retiere C, Yang XJ, Campeau PM, Martinez F, Rosenfeld JA, Le Caignec C, Küry S, Mercier S, Moradkhani K, Conrad S, Besnard T, Cogné B, Katsanis N, Bézieau S, Poschmann J, Davis EE, and Isidor B
- Subjects
- Acetylation, Adolescent, Animals, Child, Child, Preschool, DNA Copy Number Variations genetics, Female, Histones chemistry, Histones metabolism, Humans, Infant, Larva genetics, Magnetic Resonance Imaging, Male, Middle Aged, Models, Molecular, Mutation, Repressor Proteins deficiency, Repressor Proteins metabolism, Syndrome, Young Adult, Zebrafish genetics, Zebrafish Proteins deficiency, Zebrafish Proteins genetics, Autism Spectrum Disorder genetics, Haploinsufficiency genetics, Histone Deacetylases metabolism, Intellectual Disability genetics, Repressor Proteins genetics
- Abstract
Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment., (Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
39. Loss-of-function variants in ARHGEF9 are associated with an X-linked intellectual disability dominant disorder.
- Author
-
Ghesh L, Besnard T, Nizon M, Trochu E, Landeau-Trottier G, Breheret F, Thauvin-Robinet C, Bruel AL, Kuentz P, Coubes C, Cuisset L, Mignot C, Keren B, Bézieau S, and Cogné B
- Subjects
- Codon, Nonsense, Female, Genes, X-Linked, Humans, Male, Mutation, Missense, Rho Guanine Nucleotide Exchange Factors genetics, X Chromosome Inactivation, Intellectual Disability genetics
- Abstract
ARHGEF9 defects lead to an X-linked intellectual disability disorder related to inhibitory synaptic dysfunction. This condition is more frequent in males, with a few affected females reported. Up to now, sequence variants and gross deletions have been identified in males, while only chromosomal aberrations have been reported in affected females who showed a skewed pattern of X-chromosome inactivation (XCI), suggesting an X-linked recessive (XLR) disorder. We report three novel loss-of-function (LoF) variants in ARHGEF9: A de novo synonymous variant affecting splicing (NM_015185.2: c.1056G>A, p.(Lys352=)) in one female; a nonsense variant in another female (c.865C>T, p.(Arg289*)), that is, also present as a somatically mosaic variant in her father, and a de novo nonsense variant in a boy (c.899G>A; p.(Trp300*)). Both females showed a random XCI. Thus, we suggest that missense variants are responsible for an XLR disorder affecting males and that LoF variants, mainly occurring de novo, may be responsible for an X-linked dominant disorder affecting males and females., (© 2021 Wiley Periodicals LLC.)
- Published
- 2021
- Full Text
- View/download PDF
40. Histone H3.3 beyond cancer: Germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients.
- Author
-
Bryant L, Li D, Cox SG, Marchione D, Joiner EF, Wilson K, Janssen K, Lee P, March ME, Nair D, Sherr E, Fregeau B, Wierenga KJ, Wadley A, Mancini GMS, Powell-Hamilton N, van de Kamp J, Grebe T, Dean J, Ross A, Crawford HP, Powis Z, Cho MT, Willing MC, Manwaring L, Schot R, Nava C, Afenjar A, Lessel D, Wagner M, Klopstock T, Winkelmann J, Catarino CB, Retterer K, Schuette JL, Innis JW, Pizzino A, Lüttgen S, Denecke J, Strom TM, Monaghan KG, Yuan ZF, Dubbs H, Bend R, Lee JA, Lyons MJ, Hoefele J, Günthner R, Reutter H, Keren B, Radtke K, Sherbini O, Mrokse C, Helbig KL, Odent S, Cogne B, Mercier S, Bezieau S, Besnard T, Kury S, Redon R, Reinson K, Wojcik MH, Õunap K, Ilves P, Innes AM, Kernohan KD, Costain G, Meyn MS, Chitayat D, Zackai E, Lehman A, Kitson H, Martin MG, Martinez-Agosto JA, Nelson SF, Palmer CGS, Papp JC, Parker NH, Sinsheimer JS, Vilain E, Wan J, Yoon AJ, Zheng A, Brimble E, Ferrero GB, Radio FC, Carli D, Barresi S, Brusco A, Tartaglia M, Thomas JM, Umana L, Weiss MM, Gotway G, Stuurman KE, Thompson ML, McWalter K, Stumpel CTRM, Stevens SJC, Stegmann APA, Tveten K, Vøllo A, Prescott T, Fagerberg C, Laulund LW, Larsen MJ, Byler M, Lebel RR, Hurst AC, Dean J, Schrier Vergano SA, Norman J, Mercimek-Andrews S, Neira J, Van Allen MI, Longo N, Sellars E, Louie RJ, Cathey SS, Brokamp E, Heron D, Snyder M, Vanderver A, Simon C, de la Cruz X, Padilla N, Crump JG, Chung W, Garcia B, Hakonarson HH, and Bhoj EJ
- Subjects
- Animals, Forkhead Transcription Factors genetics, Germ-Line Mutation, Humans, Zebrafish genetics, Zebrafish metabolism, Zebrafish Proteins metabolism, Histones genetics, Histones metabolism, Neurodegenerative Diseases genetics
- Abstract
Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A ( H3F3A ) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2020
- Full Text
- View/download PDF
41. Impairment of the mitochondrial one-carbon metabolism enzyme SHMT2 causes a novel brain and heart developmental syndrome.
- Author
-
García-Cazorla À, Verdura E, Juliá-Palacios N, Anderson EN, Goicoechea L, Planas-Serra L, Tsogtbaatar E, Dsouza NR, Schlüter A, Urreizti R, Tarnowski JM, Gavrilova RH, Ruiz M, Rodríguez-Palmero A, Fourcade S, Cogné B, Besnard T, Vincent M, Bézieau S, Folmes CD, Zimmermann MT, Klee EW, Pandey UB, Artuch R, Cousin MA, and Pujol A
- Subjects
- Brain pathology, Carbon metabolism, Female, Humans, Magnetic Resonance Imaging methods, Male, Syndrome, Brain growth & development, Glycine Hydroxymethyltransferase genetics, Heart growth & development, Malformations of Cortical Development genetics, Mitochondria metabolism
- Published
- 2020
- Full Text
- View/download PDF
42. U-shaped relationship between pre-operative plasma fibrinogen levels and severe peri-operative bleeding in cardiac surgery.
- Author
-
Mion S, Duval B, Besnard T, Darné B, Mouton C, Jecker O, Labrousse L, Remy A, Zaouter C, and Ouattara A
- Subjects
- Fibrinogen, Humans, Plasma, Postoperative Hemorrhage diagnosis, Postoperative Hemorrhage epidemiology, Postoperative Hemorrhage etiology, Retrospective Studies, Cardiac Surgical Procedures adverse effects
- Abstract
Background: An inverse linear relationship has been reported between pre-operative fibrinogen levels and postoperative blood loss in cardiac surgery. However, recently high pre-operative fibrinogen levels have also been reported to be associated with increased blood transfusion and re-operation., Objective: We tested the hypothesis that the relationship between pre-operative fibrinogen levels and severe peri-operative bleeding is not linear., Design: A large-scale (n = 3883) single-centre retrospective study., Setting: A tertiary care teaching hospital., Patients: We analysed data from our institutional database which includes all patients above 18 years who underwent on-pump cardiac surgery through a sternotomy between September 2010 and May 2014., Main Outcome Measures: Peri-operative severe bleeding adapted from the Universal Definition of Peri-operative Bleeding, class 3 or 4. The relationship between pre-operative fibrinogen levels and peri-operative severe bleeding was analysed by binary logistic regression. A cubic B-spline transformation was used to estimate the relationship between pre-operative fibrinogen level associated with excessive peri-operative bleeding., Results: Severe peri-operative bleeding was observed in 957 (24.6%) patients. An L-shaped relationship was observed between pre-operative fibrinogen levels and 24-h postoperative blood loss. The relationship between pre-operative fibrinogen levels and severe peri-operative bleeding (i.e. Universal Definition of Peri-operative Bleeding class 3 or 4) was U-shaped: the risk of severe peri-operative bleeding bottomed at 3.3 g l when the upward sloping curve started at 5.8 g l with a steeper increase above 8.2 g l., Conclusion: We reported a U-shaped relationship between severe peri-operative bleeding and pre-operative fibrinogen levels. While a low-level of fibrinogen appears to be associated with a high risk of bleeding, a high level does not necessarily protect the patient against such a risk and could even be a risk factor for peri-operative bleeding.
- Published
- 2020
- Full Text
- View/download PDF
43. A dominant vimentin variant causes a rare syndrome with premature aging.
- Author
-
Cogné B, Bouameur JE, Hayot G, Latypova X, Pattabiraman S, Caillaud A, Si-Tayeb K, Besnard T, Küry S, Chariau C, Gaignerie A, David L, Bordure P, Kaganovich D, Bézieau S, Golzio C, Magin TM, and Isidor B
- Subjects
- 3T3-L1 Cells, Adipocytes metabolism, Adiposity, Adult, Animals, Cells, Cultured, Genes, Dominant, Humans, Induced Pluripotent Stem Cells metabolism, MCF-7 Cells, Male, Mice, Mutation, Neurogenesis, Perilipin-1 metabolism, Progeria pathology, Vimentin metabolism, Zebrafish, Progeria genetics, Vimentin genetics
- Abstract
Progeroid syndromes are a group of rare genetic disorders, which mimic natural aging. Unraveling the molecular defects in such conditions could impact our understanding of age-related syndromes such as Alzheimer's or cardiovascular diseases. Here we report a de novo heterozygous missense variant in the intermediate filament vimentin (c.1160 T > C; p.(Leu387Pro)) causing a multisystem disorder associated with frontonasal dysostosis and premature aging in a 39-year-old individual. Human vimentin p.(Leu387Pro) expression in zebrafish perturbed body fat distribution, and craniofacial and peripheral nervous system development. In addition, studies in patient-derived and transfected cells revealed that the variant affects vimentin turnover and its ability to form filaments in the absence of wild-type vimentin. Vimentin p.(Leu387Pro) expression diminished the amount of peripilin and reduced lipid accumulation in differentiating adipocytes, recapitulating key patient's features in vivo and in vitro. Our data highlight the function of vimentin during development and suggest its contribution to natural aging.
- Published
- 2020
- Full Text
- View/download PDF
44. Intraoperative changes in blood lactate levels are associated with worse short-term outcomes after cardiac surgery with cardiopulmonary bypass.
- Author
-
Duval B, Besnard T, Mion S, Leuillet S, Jecker O, Labrousse L, Rémy A, Zaouter C, and Ouattara A
- Subjects
- Aged, Female, Humans, Intraoperative Period, Male, Middle Aged, Retrospective Studies, Treatment Outcome, Cardiac Surgical Procedures adverse effects, Cardiopulmonary Bypass adverse effects, Lactic Acid blood
- Abstract
Background: A high perioperative blood lactate level has been reported to be associated with poor outcomes after cardiac surgery. More than isolated peaks of lactate values, it should be more interesting to take into account changes in intraoperative blood lactate level (∆Lact). This large-scale retrospective study evaluated the relationship between ∆Lact and overall intensive care unit morbidity and 30-day all-cause mortality., Methods: Perioperative data from consecutive patients undergoing on-pump cardiac surgery between September 2010 and June 2016 were retrospectively analysed through our institutional database including clinical, transfusion and laboratory test results implemented prospectively by physicians. Blood lactate levels were initially measured after induction of anaesthesia (baseline) and periodically during the surgery. The ∆Lact was defined as the difference between the highest intraoperative blood lactate and the baseline lactate level and offered the opportunity to stratify patients into four subgroups: ⩽0, 0.1-0.9, 1-1.9 and ⩾2 mmol L
-1 ., Results: From the 7,795 patients found eligible during the study period, 7,447 patients were analysed. The median ∆Lact of our patients was 0.6 (0.3-1) mmol L-1 . Most of the studied patients (65.9%) exhibited a ∆Lact between 0.1 and 0.9 mmol L-1 . A concentration-dependent relationship was observed between ∆Lact and intensive care unit morbidity and 30-day mortality. After adjustment for co-variables, all ∆Lact > 0 was associated with an increase in overall intensive care unit morbidity. An independent relationship was also found between ∆Lact and 30-day mortality as of a 1 mmol L-1 increase., Conclusion: Our results suggest that ∆Lact is associated with poor short-term outcomes in adult cardiac surgical patients.- Published
- 2019
- Full Text
- View/download PDF
45. Biallelic pathogenic variants in the lanosterol synthase gene LSS involved in the cholesterol biosynthesis cause alopecia with intellectual disability, a rare recessive neuroectodermal syndrome.
- Author
-
Besnard T, Sloboda N, Goldenberg A, Küry S, Cogné B, Breheret F, Trochu E, Conrad S, Vincent M, Deb W, Balguerie X, Barbarot S, Baujat G, Ben-Omran T, Bursztejn AC, Carmignac V, Datta AN, Delignières A, Faivre L, Gardie B, Guéant JL, Kuentz P, Lenglet M, Nassogne MC, Ramaekers V, Schnur RE, Si Y, Torti E, Thevenon J, Vabres P, Van Maldergem L, Wand D, Wiedemann A, Cariou B, Redon R, Lamazière A, Bézieau S, Feillet F, and Isidor B
- Subjects
- Age of Onset, Alopecia complications, Alopecia pathology, Child, Child, Preschool, Cholesterol genetics, Developmental Disabilities complications, Developmental Disabilities pathology, Epilepsy complications, Epilepsy genetics, Epilepsy pathology, Female, Humans, Infant, Intellectual Disability complications, Intellectual Disability pathology, Lanosterol genetics, Lanosterol metabolism, Male, Mutation, Pedigree, Phenotype, Squalene analogs & derivatives, Squalene metabolism, Exome Sequencing, Alopecia genetics, Cholesterol metabolism, Developmental Disabilities genetics, Intellectual Disability genetics, Intramolecular Transferases genetics
- Abstract
Purpose: Lanosterol synthase (LSS) gene was initially described in families with extensive congenital cataracts. Recently, a study has highlighted LSS associated with hypotrichosis simplex. We expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. It is a rare autosomal recessive condition characterized by hypotrichosis and intellectual disability (ID) or developmental delay (DD), frequently associated with early-onset epilepsy and other dermatological features., Methods: Through a multicenter international collaborative study, we identified LSS pathogenic variants in APMR individuals either by exome sequencing or LSS Sanger sequencing. Splicing defects were assessed by transcript analysis and minigene assay., Results: We reported ten APMR individuals from six unrelated families with biallelic variants in LSS. We additionally identified one affected individual with a single rare variant in LSS and an allelic imbalance suggesting a second event. Among the identified variants, two were truncating, seven were missense, and two were splicing variants. Quantification of cholesterol and its precursors did not reveal noticeable imbalance., Conclusion: In the cholesterol biosynthesis pathway, lanosterol synthase leads to the cyclization of (S)-2,3-oxidosqualene into lanosterol. Our data suggest LSS as a major gene causing a rare recessive neuroectodermal syndrome.
- Published
- 2019
- Full Text
- View/download PDF
46. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability.
- Author
-
Cogné B, Ehresmann S, Beauregard-Lacroix E, Rousseau J, Besnard T, Garcia T, Petrovski S, Avni S, McWalter K, Blackburn PR, Sanders SJ, Uguen K, Harris J, Cohen JS, Blyth M, Lehman A, Berg J, Li MH, Kini U, Joss S, von der Lippe C, Gordon CT, Humberson JB, Robak L, Scott DA, Sutton VR, Skraban CM, Johnston JJ, Poduri A, Nordenskjöld M, Shashi V, Gerkes EH, Bongers EMHF, Gilissen C, Zarate YA, Kvarnung M, Lally KP, Kulch PA, Daniels B, Hernandez-Garcia A, Stong N, McGaughran J, Retterer K, Tveten K, Sullivan J, Geisheker MR, Stray-Pedersen A, Tarpinian JM, Klee EW, Sapp JC, Zyskind J, Holla ØL, Bedoukian E, Filippini F, Guimier A, Picard A, Busk ØL, Punetha J, Pfundt R, Lindstrand A, Nordgren A, Kalb F, Desai M, Ebanks AH, Jhangiani SN, Dewan T, Coban Akdemir ZH, Telegrafi A, Zackai EH, Begtrup A, Song X, Toutain A, Wentzensen IM, Odent S, Bonneau D, Latypova X, Deb W, Redon S, Bilan F, Legendre M, Troyer C, Whitlock K, Caluseriu O, Murphree MI, Pichurin PN, Agre K, Gavrilova R, Rinne T, Park M, Shain C, Heinzen EL, Xiao R, Amiel J, Lyonnet S, Isidor B, Biesecker LG, Lowenstein D, Posey JE, Denommé-Pichon AS, Férec C, Yang XJ, Rosenfeld JA, Gilbert-Dussardier B, Audebert-Bellanger S, Redon R, Stessman HAF, Nellaker C, Yang Y, Lupski JR, Goldstein DB, Eichler EE, Bolduc F, Bézieau S, Küry S, and Campeau PM
- Subjects
- Adolescent, Adult, Amino Acid Sequence, Autistic Disorder metabolism, Autistic Disorder pathology, Child, Child, Preschool, Female, Genetic Association Studies, Humans, Infant, Intellectual Disability metabolism, Intellectual Disability pathology, Male, Prognosis, Sequence Homology, Syndrome, Young Adult, Adaptor Proteins, Signal Transducing genetics, Autistic Disorder etiology, Intellectual Disability etiology, Mutation, Missense, Nuclear Proteins genetics
- Abstract
Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants., (Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
47. Complex Compound Inheritance of Lethal Lung Developmental Disorders Due to Disruption of the TBX-FGF Pathway.
- Author
-
Karolak JA, Vincent M, Deutsch G, Gambin T, Cogné B, Pichon O, Vetrini F, Mefford HC, Dines JN, Golden-Grant K, Dipple K, Freed AS, Leppig KA, Dishop M, Mowat D, Bennetts B, Gifford AJ, Weber MA, Lee AF, Boerkoel CF, Bartell TM, Ward-Melver C, Besnard T, Petit F, Bache I, Tümer Z, Denis-Musquer M, Joubert M, Martinovic J, Bénéteau C, Molin A, Carles D, André G, Bieth E, Chassaing N, Devisme L, Chalabreysse L, Pasquier L, Secq V, Don M, Orsaria M, Missirian C, Mortreux J, Sanlaville D, Pons L, Küry S, Bézieau S, Liet JM, Joram N, Bihouée T, Scott DA, Brown CW, Scaglia F, Tsai AC, Grange DK, Phillips JA 3rd, Pfotenhauer JP, Jhangiani SN, Gonzaga-Jauregui CG, Chung WK, Schauer GM, Lipson MH, Mercer CL, van Haeringen A, Liu Q, Popek E, Coban Akdemir ZH, Lupski JR, Szafranski P, Isidor B, Le Caignec C, and Stankiewicz P
- Subjects
- DNA Copy Number Variations genetics, Female, Fibroblast Growth Factor 10 metabolism, Gene Expression Regulation, Gestational Age, Humans, Infant, Newborn, Infant, Newborn, Diseases metabolism, Infant, Newborn, Diseases pathology, Lung embryology, Lung growth & development, Lung Diseases metabolism, Lung Diseases pathology, Male, Maternal Inheritance, Organogenesis, Paternal Inheritance, Pedigree, Polymorphism, Single Nucleotide genetics, Receptor, Fibroblast Growth Factor, Type 2 metabolism, T-Box Domain Proteins metabolism, Fibroblast Growth Factor 10 genetics, Infant, Newborn, Diseases genetics, Infant, Newborn, Diseases mortality, Lung Diseases genetics, Lung Diseases mortality, Signal Transduction genetics, T-Box Domain Proteins genetics
- Abstract
Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung., (Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
48. Increased dosing regimens of piperacillin-tazobactam are needed to avoid subtherapeutic exposure in critically ill patients with augmented renal clearance.
- Author
-
Besnard T, Carrié C, Petit L, and Biais M
- Subjects
- Adult, Anti-Bacterial Agents administration & dosage, Anti-Bacterial Agents therapeutic use, Critical Illness therapy, Female, Humans, Male, Metabolic Clearance Rate physiology, Microbial Sensitivity Tests methods, Microbial Sensitivity Tests statistics & numerical data, Middle Aged, Organ Dysfunction Scores, Piperacillin, Tazobactam Drug Combination analysis, Piperacillin, Tazobactam Drug Combination therapeutic use, Retrospective Studies, Dose-Response Relationship, Drug, Piperacillin, Tazobactam Drug Combination administration & dosage
- Published
- 2019
- Full Text
- View/download PDF
49. New splicing pathogenic variant in EBP causing extreme familial variability of Conradi-Hünermann-Happle Syndrome.
- Author
-
Pacault M, Vincent M, Besnard T, Kannengiesser C, Bénéteau C, Barbarot S, Latypova X, Belabbas K, Lamazière A, Winer N, Joubert M, Bézieau S, Isidor B, Mercier S, Nizon M, Leclerc-Mercier S, Hadj-Rabia S, and Dufernez F
- Subjects
- Aborted Fetus abnormalities, Adult, Chondrodysplasia Punctata pathology, Female, Humans, Male, Pedigree, RNA Splicing, Chondrodysplasia Punctata genetics, Mutation, Phenotype, Steroid Isomerases genetics
- Abstract
X-linked dominant chondrodysplasia punctata (CDPX2 or Conradi-Hünermann-Happle syndrome, MIM #302960) is caused by mutations in the EBP gene. Affected female patients present with Blaschkolinear ichthyosis, coarse hair or alopecia, short stature, and normal psychomotor development. The disease is usually lethal in boys. Nevertheless, few male patients have been reported; they carry a somatic mosaicism in EBP or present with Klinefelter syndrome. Here, we report CDPX2 patients belonging to a three-generation family, carrying the splice variant c.301 + 5 G > C in intron 2 of EBP. The grandfather carries the variant as mosaic state and presents with short stature and mild ichthyosis. The mother also presents with short stature and mild ichthyosis and the female fetus with severe limb and vertebrae abnormalities and no skin lesions, with random X inactivation in both. This further characterizes the phenotypical spectrum of CDPX2, as well as intrafamilial variability, and raises the question of differential EBP mRNA splicing between the different target tissues.
- Published
- 2018
- Full Text
- View/download PDF
50. Identification of a new VHL exon and complex splicing alterations in familial erythrocytosis or von Hippel-Lindau disease.
- Author
-
Lenglet M, Robriquet F, Schwarz K, Camps C, Couturier A, Hoogewijs D, Buffet A, Knight SJL, Gad S, Couvé S, Chesnel F, Pacault M, Lindenbaum P, Job S, Dumont S, Besnard T, Cornec M, Dreau H, Pentony M, Kvikstad E, Deveaux S, Burnichon N, Ferlicot S, Vilaine M, Mazzella JM, Airaud F, Garrec C, Heidet L, Irtan S, Mantadakis E, Bouchireb K, Debatin KM, Redon R, Bezieau S, Bressac-de Paillerets B, Teh BT, Girodon F, Randi ML, Putti MC, Bours V, Van Wijk R, Göthert JR, Kattamis A, Janin N, Bento C, Taylor JC, Arlot-Bonnemains Y, Richard S, Gimenez-Roqueplo AP, Cario H, and Gardie B
- Subjects
- Adolescent, Adult, Child, Female, Heterozygote, Humans, Male, Middle Aged, Pedigree, Polycythemia classification, Polycythemia pathology, Young Adult, von Hippel-Lindau Disease pathology, Exons, Genetic Predisposition to Disease, Mutation, Polycythemia genetics, RNA Splicing, Von Hippel-Lindau Tumor Suppressor Protein genetics, von Hippel-Lindau Disease genetics
- Abstract
Chuvash polycythemia is an autosomal recessive form of erythrocytosis associated with a homozygous p.Arg200Trp mutation in the von Hippel-Lindau ( VHL ) gene. Since this discovery, additional VHL mutations have been identified in patients with congenital erythrocytosis, in a homozygous or compound-heterozygous state. VHL is a major tumor suppressor gene, mutations in which were first described in patients presenting with VHL disease, which is characterized by the development of highly vascularized tumors. Here, we identify a new VHL cryptic exon (termed E1') deep in intron 1 that is naturally expressed in many tissues. More importantly, we identify mutations in E1' in 7 families with erythrocytosis (1 homozygous case and 6 compound-heterozygous cases with a mutation in E1' in addition to a mutation in VHL coding sequences) and in 1 large family with typical VHL disease but without any alteration in the other VHL exons. In this study, we show that the mutations induced a dysregulation of VHL splicing with excessive retention of E1' and were associated with a downregulation of VHL protein expression. In addition, we demonstrate a pathogenic role for synonymous mutations in VHL exon 2 that altered splicing through E2-skipping in 5 families with erythrocytosis or VHL disease. In all the studied cases, the mutations differentially affected splicing, correlating with phenotype severity. This study demonstrates that cryptic exon retention and exon skipping are new VHL alterations and reveals a novel complex splicing regulation of the VHL gene. These findings open new avenues for diagnosis and research regarding the VHL-related hypoxia-signaling pathway., (© 2018 by The American Society of Hematology.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.