Elisa Bruni, Claire Chenu, Rose Z. Abramoff, Guido Baldoni, Dietmar Barkusky, Hugues Clivot, Yuanyuan Huang, Thomas Kätterer, Dorota Pikuła, Heide Spiegel, Iñigo Virto, Bertrand Guenet, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de géologie de l'ENS (LGENS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Environmental Sciences Division [Oak Ridge], Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Centre for Agricultural Landscape Research ZALF, Experimental Infrastructure Platform, Working Group 'Experimental Station Müncheberg', Müncheberg, Fractionnement des AgroRessources et Environnement (FARE), Université de Reims Champagne-Ardenne (URCA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), CSIRO Oceans and Atmosphere, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden, Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation State Research Institute, Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food Safety (AGES), Departamento de Ciencias. IS-FOOD, Universidad Pública de Navarra, Bruni E., Chenu C., Abramoff R.Z., Baldoni G., Barkusky D., Clivot H., Huang Y., Katterer T., Pikula D., Spiegel H., Virto I., Guenet B., Universidad Pública de Navarra. Departamento de Ciencias, and Nafarroako Unibertsitate Publikoa. Zientziak Saila
Soils store vast amounts of carbon (C) on land, and increasing soil organic carbon (SOC) stocks in already managed soils such as croplands may be one way to remove C from the atmosphere, thereby limiting subsequent warming. The main objective of this study was to estimate the amount of additional C input needed to annually increase SOC stocks by 4‰ at 16 long-term agricultural experiments in Europe, including exogenous organic matter (EOM) additions. We used an ensemble of six SOC models and ran them under two configurations: (1) with default parametrization and (2) with parameters calibrated site-by-site to fit the evolution of SOC stocks in the control treatments (without EOM). We compared model simulations and analysed the factors generating variability across models. The calibrated ensemble was able to reproduce the SOC stock evolution in the unfertilised control treatments. We found that, on average, the experimental sites needed an additional 1.5 ± 1.2 Mg C ha−1 year−1 to increase SOC stocks by 4‰ per year over 30 years, compared to the C input in the control treatments (multi-model median ± median standard deviation across sites). That is, a 119% increase compared to the control. While mean annual temperature, initial SOC stocks and initial C input had a significant effect on the variability of the predicted C input in the default configuration (i.e., the relative standard deviation of the predicted C input from the mean), only water-related variables (i.e., mean annual precipitation and potential evapotranspiration) explained the divergence between models when calibrated. Our work highlights the challenge of increasing SOC stocks in agriculture and accentuates the need to increasingly lean on multi-model ensembles when predicting SOC stock trends and related processes. To increase the reliability of SOC models under future climate change, we suggest model developers to better constrain the effect of water-related variables on SOC decomposition. This work benefited from the French state aid managed by the ANR under the “Investissements d'avenir” programme with the reference ANR-16-CONV-0003 (CLAND project). EB, RZA and BG are supported by the European Union's Horizon 2020 research and innovation program under grant agreement No 101000289 (Holisoils project). RZA was also supported by the United States Department of Energy, Office of Science, and Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the United States Department of Energy under contract DE-AC05-00OR22725.