1. B$\acute{e}$zier curves based on Lupa\c{s} $(p,q)$-analogue of Bernstein polynomials in CAGD
- Author
-
Khan, Khalid and Lobiyal, D. K.
- Subjects
Computer Science - Graphics ,65D17, 41A10 - Abstract
In this paper, we use the blending functions of Lupa\c{s} type (rational) $(p,q)$-Bernstein operators based on $(p,q)$-integers for construction of Lupa\c{s} $(p,q)$-B$\acute{e}$zier curves (rational curves) and surfaces (rational surfaces) with shape parameters. We study the nature of degree elevation and degree reduction for Lupa\c{s} $(p,q)$-B$\acute{e}$zier Bernstein functions. Parametric curves are represented using Lupa\c{s} $(p,q)$-Bernstein basis. We introduce affine de Casteljau algorithm for Lupa\c{s} type $(p,q)$-Bernstein B$\acute{e}$zier curves. The new curves have some properties similar to $q$-B$\acute{e}$zier curves. Moreover, we construct the corresponding tensor product surfaces over the rectangular domain $(u, v) \in [0, 1] \times [0, 1] $ depending on four parameters. We also study the de Casteljau algorithm and degree evaluation properties of the surfaces for these generalization over the rectangular domain. We get $q$-B$\acute{e}$zier surfaces for $(u, v) \in [0, 1] \times [0, 1] $ when we set the parameter $p_1=p_2=1.$ In comparison to $q$-B$\acute{e}$zier curves and surfaces based on Lupa\c{s} $q$-Bernstein polynomials, our generalization gives us more flexibility in controlling the shapes of curves and surfaces. We also show that the $(p,q)$-analogue of Lupa\c{s} Bernstein operator sequence $L^{n}_{p_n,q_n}(f,x)$ converges uniformly to $f(x)\in C[0,1]$ if and only if $0
0$ fixed and $p \neq 1,$ the sequence $L^{n}_{p,q}(f,x)$ converges uniformly to $f(x)~ \in C[0,1]$ if and only if $f(x)=ax+b$ for some $a, b \in \mathbb{R}.$, Comment: 24 pages, 9 figures, $(p,q)$-lupas operator and limit $(p,q)$-lupas operators and their property introduced, typo corrected - Published
- 2015