51. Tuning the buckling sequences of metamaterials using plasticity
- Author
-
Liu, Wenfeng, Ennis, Bernard, and Coulais, Corentin
- Subjects
Condensed Matter - Soft Condensed Matter - Abstract
Material nonlinearities such as hyperelasticity, viscoelasticity, and plasticity have recently emerged as design paradigms for metamaterials based on buckling. These metamaterials exhibit properties such as shape morphing, transition waves, and sequential deformation. In particular, plasticity has been used in the design of sequential metamaterials which combine high stiffness, strength, and dissipation at low density and produce superior shock absorbing performances. However, the use of plasticity for tuning buckling sequences in metamaterials remains largely unexplored. In this work, we introduce yield area, yield criterion, and loading history as new design tools of plasticity in tuning the buckling load and sequence in metamaterials. We numerically and experimentally demonstrate a controllable buckling sequence in different metamaterial architectures with the above three strategies. Our findings enrich the toolbox of plasticity in the design of metamaterials with more controllable sequential deformations and leverage plasticity to broader applications in multi-functional metamaterials, high-performance soft robotics, and mechanical self-assembly.
- Published
- 2024