1. A new microlocal analysis of hyperfunctions.
- Author
-
Hoepfner, Gustavo and Ragognette, Luis F.
- Subjects
- *
DIFFERENTIAL operators , *PSEUDODIFFERENTIAL operators , *ELLIPTIC operators - Abstract
In this work we study microlocal regularity of hyperfunctions defining in this context a class of generalized FBI transforms first introduced for distributions by Berhanu and Hounie. Using a microlocal decomposition of a hyperfunction and the generalized FBI transforms we were able to characterize the wave-front set of hyperfunctions according to several types of regularity. The microlocal decomposition allowed us to recover and generalize both classical and recent results and, in particular, we proved for differential operators with real-analytic coefficients that if the elliptic regularity theorem regarding any reasonable regularity holds for distributions, then it is automatically true for hyperfunctions. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF