1. Characterization of TiO2 Nanopowders by Raman Spectroscopy.
- Author
-
Mamedov, S.
- Subjects
- *
RAMAN spectroscopy , *DYE-sensitized solar cells , *TITANIUM dioxide nanoparticles , *BRILLOUIN zones , *NANOSTRUCTURED materials - Abstract
Raman spectroscopy has been successfully used to study the microscopic nature of the structural and morphological properties of nanopowders. Nanoparticles of titanium dioxide (TiO2) are essential parts of dye-sensitized solar cells and materials for catalysis. Dye-sensitized solar cells are advantageous alternatives to conventional solid-state photovoltaic devices because of performance, environmental compatibility, and cost. Grain size and thickness of TiO2 film show a dominant effect on the efficiency of the photovoltaic devices. We have investigated commercial TiO2 nanopowders with different sizes using Raman spectroscopy. The conservation of momentum for light scattering from the phonons means that the only modes at the center of Brillouin Zone (q = 0) are Raman active. The localization of phonons in nanoscale materials leads to the relaxation of this selection rule. It gives rise to an increase in the number of Raman active modes away from the center of the Brillouin zone, and, therefore, results in peak shifts and broadening. This study presents and compares the details of the evolution of the Eg band at 142.9 cm-1 from different nanopowders. This research likewise discusses experimental results in the frame of the model of confined phonons. It was found that the Raman spectra of nanopowders are very sensitive to methods and preparation conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2020